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This paper suggests first-order and second-order generalized zero equalities and constructs 

a new flexible Lyapunov–Krasovskii functional with more state terms. Also, by applying 

various zero equalities, improved stability criteria of linear systems with interval time- 

varying delays are developed. Using Wirtinger-based integral inequality, Jensen inequality 

and a lower bound lemma, the time derivative of the Lyapunov–Krasovskii functional is 

bounded by the combinations of various state terms including not only integral terms but 

also their interval-normalized versions, which contributes to make the stability criteria less 

conservative. Numerical examples show the improved performance of the criteria in terms 

of maximum delay bounds. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Stability analysis of time-delay systems has been one of the hottest issues since time delays occur in many dynamic 

systems such as networked control systems, neural network systems, mechanical systems and chemical processes. The oc- 

currence of such time delays often causes undesirable dynamic behaviors such as severe performance degradation or even 

instabilities of the relevant systems [1] . Thus, stability analysis of time-delay systems has to be considered before imple- 

menting various control strategies. The field of stability analysis of time-delay systems can be classified into two categories 

that are delay-independent stability analysis and delay-dependent one. Currently, many researchers mainly have focused 

on the delay-dependent stability analysis based on various Lyapunov–Krasovskii functionals because the delay-dependent 

stability criteria are generally less conservative than the delay-independent ones. 

The main topic of the stability analysis for time-delay systems is to find the maximum delay bounds guaranteeing the 

asymptotic stability of the concerned systems as large as possible. To do this, with an appropriate Lyapunov–Krasovskii 

functional, obtaining a precise bound of the time derivative of a Lyapunov–Krasovskii functional is crucial since its integral 

quadratic functions cannot be directly handled to construct linear matrix inequality (LMI) conditions. Consequently, to de- 

rive tighter bounds of the time derivatives of various Lyapunov–Krasovskii functionals, many mathematical tools have been 

proposed such as a slack-matrix-based integral inequality [2–4] , Jensen inequality [5–17] , a free-weighting matrix method 

[18–20] , a lower bound lemma for reciprocal convexity [9,13,16,17,21] , a zero equality approach [16,22] and a delay partition- 

ing method [23,24] . Among the above methods, especially the Jensen inequality has been widely used because it could give 

identical performance to the slack-matrix-based integral inequality with the less number of decision variables [21] . Recently, 
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however, a new integral inequality, called Wirtinger-based integral inequality, that reduces the conservatism of the Jensen 

inequality was proposed in [25] and has attracted considerable attentions [26,27] . Further, there have been an attempt to 

generalize the Wirtinger-based integral inequality [28] . However, in [25–28] , the Lyapunov–Krasovskii functionals can be 

more flexible with augmented integrands, and the utilized zero equality can be more general by handling the combinations 

of not only a state vector x ( t ) and ˙ x (t) but also an integral of x ( t ). Thus, there is still room for reducing the conservatism. 

With the above observations, in this paper, the stability analysis for linear systems with interval time-varying delays is 

revisited. The main contributions of this paper lie in three aspects. 

1. A new flexible Lyapunov–Krasovskii functional containing more state terms is proposed to make less conservative results. 

In some integrands of the functional, not only x (s ) , ˙ x (s ) but also 
∫ t 

s x (r) dr, 
∫ t−h 1 

s x (r) dr, 
∫ s 

t−h 2 
x (r) dr, 

∫ s 
t−h 1 

x (r) dr are in- 

cluded, where h 1 and h 2 are lower and upper bounds of a time-varying delay, h ( t ), respectively. To the best of authors’ 

knowledge, the proposed functional has not been reported yet in the stability analysis for time-delay systems. 

2. Inspired by the works of Kwon et al. [16] and Kim et al. [22] , generalized zero equality lemmas are proposed . Based 

on the proposed lemmas, it can be verified that the zero equalities in [16,22] are special cases of the proposed ones. 

Further, new zero equalities are derived and merged into the time derivative of the Lyapunov–Krasovskii functional to 

reduce the conservatism of the stability criteria. 

3. The time derivative of the Lyapunov–Krasovskii functional is bounded by the combinations of various state terms includ- 

ing not only integral terms such as f i ( t ), g i ( t ) (i = 1 , 2 , 3) but also their interval-normalized versions such as 1 
h (t) −h 1 

f j (t) , 

1 
h 2 −h (t) 

g j (t) ( j = 1 , 2 , 3) , where f 1 (t) = 

∫ t−h 1 
t −h (t ) 

x (r) dr, f 2 (t) = 

∫ t−h 1 
t −h (t ) 

∫ s 
t −h (t ) x (r ) dr ds , f 3 (t) = 

∫ t−h 1 
t −h (t ) 

∫ t−h 1 
s x (r) d rd s, g 1 (t) = ∫ t −h (t ) 

t−h 2 
x (r) dr, g 2 (t) = 

∫ t −h (t ) 
t−h 2 

∫ s 
t−h 2 

x (r) drds , g 3 (t) = 

∫ t −h (t ) 
t−h 2 

∫ t −h (t ) 
s x (r) d rd s . This approach contributes to make the stabil- 

ity criteria less conservative. Also, relations of the integral terms and their interval-normalized versions yield meaningful 

zero equality conditions with slack matrices. 

Based on the contributions, improved stability criteria for linear systems with interval-time varying delays are derived 

as Theorem 1 and Corollary 1 . Numerical examples show improved performance of the criteria in terms of maximum delay 

bounds. 

Notations : Throughout this paper, X > 0 ( X ≥ 0) means that X is a real symmetric positive definitive matrix (positive 

semidefinite). col{ x 1 , x 2 , . . . , x n } means [ x T 1 , x 
T 
2 , . . . , x 

T 
n ] 

T 
. diag { X , Y } means 

[ 
X 0 

0 Y 

] 
. The symmetric blocks will be readily de- 

noted by � when necessary. In addition, for any rectangular matrix M , sym { M } denotes M + M 

T . 

2. Problem formulation and preliminaries 

A linear system with a time-varying delay has been widely used to compare effectiveness of mathematical tools for less 

conservative stability criteria. Thus, in this paper, the following linear system with a time-varying delay is considered: 

˙ x (t) = Ax (t) + A d x (t − h (t)) , t ≥ 0 , 

x (t) = φ(t) , −h 2 ≤ t ≤ 0 , (1) 

where x ( t ) is a state vector, the initial condition, φ( t ), is a continuous function, a time-varying delay, h ( t ), is a continuous 

function satisfying 0 ≤ h 1 ≤ h ( t ) ≤ h 2 , h 1 and h 2 are constant values and h 12 = h 2 − h 1 . 

Before deriving our main results, we introduce the following lemmas: 

Lemma 1 (a lower bound lemma for reciprocal convexity [21] ) . Let f 1 , f 2 , . . . , f N : R 

m �→ R have positive values in an open 

subset D of R 

m . Then, the reciprocally convex combination of f i over D satisfies 

min {αi | αi > 0 , 
∑ 

i αi =1} 
∑ 

i 

1 

αi 

f i (t) = 

∑ 

i 

f i (t) + max 
g i, j (t) 

∑ 

i � = j 
g i, j (t) 

subject to {
g i, j : R 

m �→R , g j,i (t) = g i, j (t ) , 

[
f i (t ) g i, j (t ) 

g i, j (t ) f j (t ) 

]
≥ 0 

}
. 

Lemma 2 [17] . For any vectors x 1 , x 2 , matrices Q i (i = 1 , . . . , 4) , S and real scalars α > 0 , β > 0 satisfying α + β = 1 , the 

following inequality holds: 

− 1 
α x T 1 Q 1 x 1 − 1 

β
x T 2 Q 2 x 2 − β

α x T 1 Q 3 x 1 − α
β

x T 2 Q 4 x 2 ≤ −
[

x 1 

x 2 

]T [
Q 1 S 

S T Q 2 

][
x 1 

x 2 

]
subject to 

0 < 

[
Q 1 + Q 3 S 

S T Q 2 + Q 4 

]
. 
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