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a b s t r a c t 

Modular exponentiation is a time-consuming operation widely used in cryptography. Mod- 

ular multi-exponentiation, a generalization of modular exponentiation also used in cryp- 

tography, deserves further analysis from the algorithmic point of view. The parallelization 

of modular multi-exponentiation can be obtained by generalizing methods used to paral- 

lelize modular exponentiation. In this paper, we present a new parallelization method for 

the modular multi-exponentiation operation with two optimizations. The first one searches 

for the fastest solution without taking into account the number of processors. The second 

one balances the load among the processors and finds the smallest number of proces- 

sors that achieves the fastest solution. In detail, our algorithms compute the product of 

i modular exponentiations. They split up each exponent in j blocks and start j threads. 

Each thread processes together i blocks from different exponents. Thus, each block of an 

exponent is processed in a different thread, but the blocks of different exponents are pro- 

cessed together in the same thread. Using addition chains, we show the minimum number 

of threads with load balance and optimal running time. Therefore, the algorithms are op- 

timized to run with the minimum time and the minimum number of processors. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Many algorithms in cryptography need to use the modular-exponentiation operation, such as the famous Diffie–Hellman 

key exchange protocol [1] , which is widely employed in communication channels. In an early stage, cryptographers observed 

the necessity to compute the product of two modular exponentiations in the ElGamal signature scheme [2] . The importance 

of multi-exponentiation became more evident with the Digital Signature Algorithm (DSA) standardized by the National In- 

stitute of Standards and Technology (NIST). Moreover, this operation is used in privacy-enhancing protocols [3–5] , and it is 

known that many people are currently concerned about privacy issues. Multi-exponentiation can also be employed in other 

algebraic structures such as the ones used in elliptic-curve cryptosystems. 

Algorithms for modular multi-exponentiation are stable for non-parallel computers [6] . However, the scenario for hard- 

ware development is changing. Companies that manufacture computer chips are not increasing the clock frequency; instead, 

they are increasing the number of cores inside the processors. Moreover, graphical processing units have a large number of 

cores that are available for general processing. Algorithms that parallelize the usual modular exponentiation operation have 

been developed [7] , which can be used to speed up many other algorithms in the context of communication protocols. To 
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further enhance the performance of such algorithms and protocols, it is interesting to develop parallel algorithms for mod- 

ular multi-exponentiation [8] . The case of the product of two exponentiations is especially interesting, because it is used in 

many cryptographic algorithms such as DSA, Paillier Cryptosystem, and others [2–5] . 

In this work, we present new parallel algorithms to compute the modular multi-exponentiation operation by re-arranging 

the exponents in binary notation. This analytical manipulation generalizes the one used for a single exponentiation and can 

be parallelized with similar techniques. The main advantage is to reduce the number of squarings in comparison with a 

straightforward calculation. We analyze the optimal load balance and obtain analytical expressions for the partition of the 

exponents. Our algorithms can be used to compute a single modular exponentiation and can be applied to the Diffie–

Hellman [1] and RSA [9] protocols. They have better performance than parallel algorithms developed to a single modular 

exponentiation such as the ones in [7,10] . We analyze the performance of our algorithms and present simulations that 

confirm our results. 

The present work can be improved by adding other known techniques, such as pre-computation, sliding windows, or NAF 

notation [11–13] . The processing time can be reduced by using hardware properties [14] or by implementing the algorithms 

in hardware [15] . Pre-computation only speeds up when the bases are fixed. Similarly, sliding windows and NAF notation 

have advantage only when the exponents obey some restrictions, which depend on their Hamming weight. Despite the good 

performance, implementations in hardware are costly. Our solution does not depend on fixed bases, Hamming weight, or 

hardware architecture. We start by describing the basic square and multiply algorithm until achieving new parallel algo- 

rithms, which are asymptotically faster than related work. 

The structure of this paper is as follows. In Section 2 , we describe the arithmetic background. In Section 3 , we present 

the new parallelization method. In Section 4 , we analyze the performance of the algorithms. In Section 5 , we describe how 

the load balance is achieved. In Section 6 , we compare our results with related ones in Literature. In Section 7 , we present 

the simulations. In Section 8 , we draw our conclusions. 

2. Background 

Given three-integer numbers b , e , and m , modular exponentiation is the operation that computes b raised to the power 

of e modulo m , namely b e mod m . Similarly, modular multi-exponentiation is the operation that computes 

n ∏ 

i =1 

b e i 
i 

mod m, (1) 

for integers b 1 , b 2 , . . . , b n and e 1 , e 2 , . . . , e n . As we discussed in the introduction, the most interesting values of n are one and 

two. However, this technique can be applied to speed up the computation of Diophantine equations [16] for large n . A fast 

way to compute b e i mod m is to write the exponent in its binary form 

e i = 

l ∑ 

j=1 

2 

j−1 e i j , (2) 

where e i j ∈ { 0 , 1 } and l is the number of bits of e i , which is usually called as bit-length. Notice that the first index indicates 

an exponent and the second indicates its bit position. Then, to compute b e i mod m we employ 

b e i mod m = 

(
· · ·

((
b e i l 

)2 
b 

e i l−1 

)2 

· · ·
)2 

· b e i 1 mod m. (3) 

We can rewrite Eq. (3) as a recursive function 

MExp (L ) = 

{
b e 1 if L = 1 

b e l−L +1 · MExp (L − 1) 2 if L > 1 

(4) 

that starts with MExp( l ). 

Analogously, we have 

n ∏ 
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mod m = 
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·
n ∏ 

i =1 
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e i 1 
i 

mod m. (5) 

We can rewrite Eq. (5) as the following recursive function: 

MMExp (L ) = 

{∏ n 
i =1 b 

e i 
i 

if L = 1 ∏ n 
i =1 b 

e i l−L +1 

i 
· MMExp (L − 1) 2 if L > 1 

, (6) 

where L starts with the bit-length of the largest exponent e i , i.e. , 

L ← � max ( log 2 e 1 , . . . , log 2 e n ) � . (7) 
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