
Fast bit-accurate reciprocal square root

L. Pizano-Escalante a,1, R. Parra-Michel a,1, J. Vázquez Castillo b,⇑, O. Longoria-Gandara c,2

a Department of Electrical Engineering, Communications Section, CINVESTAV-IPN, Av. del Bosque 1145, col. El Bajío, 45019 Zapopan, Jalisco, Mexico
b Science Division and Engineering, University of Quintana Roo, Boulevard Bahia s/n esq. Ignacio Comonfort, Chetumal, Quintana Roo, Mexico
c Department of Electronics, Systems and IT, ITESO, Jalisco, Mexico

a r t i c l e i n f o

Article history:
Available online 7 February 2015

Keywords:
Fixed-point arithmetic
Newton–Raphson
Polynomial approximation
Reciprocal square root

a b s t r a c t

The reciprocal square root (RSR) is an operation extensively used in signal processing algorithms, where it
is necessary the design of RSR architectures in fixed-point (FxP) representation for using in mobile
devices. Currently, RSR implementations are mainly focused on floating point format, which requires long
execution time and large area resources. In this paper, an algorithm for designing FxP RSR architectures is
proposed, which achieves bit-accurate results in two clock cycles of execution time. The proposed
algorithm is based on the Newton–Raphson method, where the seed is provided through piecewise
polynomial approximation. A comparison between this RSR proposal and the straightforward approach
shows that the proposed algorithm achieves an approximately 10-fold gain in execution time, which
allows a speed-up of signal processing algorithms.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The hardware implementation of the reciprocal square root
(RSR) operation is an essential block in several digital signal
processing (DSP) designs, such as matrix decomposition [1], nor-
malization of vectors [2] or image rendering [3]. In general, RSR
hardware implementations have been focused on floating point
(FP) schemes as presented in [4,5]. However, it is known that FP
architectures require a long execution time and large area
resources [6,7], and they are mainly used for high demanding
processing like scientific computations [8].

On the other hand, current and future multimedia applications
with computationally intensive algorithms that are implemented
in embedded systems, like mobile devices and wireless systems,
have power-optimization problems with hard real time and area
constraints. Therefore, fixed-point (FxP) hardware implementa-
tions are preferred for these kind of devices due to the fact that
FxP architectures offer a shorter execution time to satisfy real-time
requirements, less area resources and power consumption [9,7,6].
Furthermore, FxP hardware implementations provide good
numerical accuracy in the system under development without

introducing significant performance losses and reliability (e.g. in
the bit error rate of wireless communication system [6] or image
quality in multimedia co-processor for rendering [10]).

In spite of the advantages of FxP architectures there are a few
works related to efficient FxP implementation of the RSR operation.
The straightforward FxP RSR implementation consists of a concate-
nated approach, where a square root (SR) operation is first
performed and then a divider is employed. In this context, the
research in the open literature has been oriented to the efficient
implementation of the separate SR and divider modules; see for
instance: [11–14] for FxP SR and [15–17] for FxP division.

This paper proposes a combined architecture for FxP RSR com-
putation. The approach is based on the Newton–Raphson (NR)
method, producing bit-accurate results in 16-bit precision in only
two clock cycles, greatly improving previous results. It is well-
known that NR has quadratic convergence and its performance is
highly dependent on a good initial approximation [18]. This prob-
lem has been solved in this paper by using a piecewise polynomial
approximation for providing the NR seed.

This paper is organized as follows: Section 2 presents an analy-
sis of a bit-accurate RSR implementation based on the straightfor-
ward divided approach, in order to determine its real performance
and constraints. Section 3 introduces the proposed algorithm,
while Section 4 discusses its architecture in detail. Section 5
explains the test methodology. Section 6 presents the implementa-
tion results and performance comparison with the traditional
approach for both bit-accurate and bit-inaccurate cases; and
finally, Section 7 presents the conclusions.

http://dx.doi.org/10.1016/j.micpro.2015.01.008
0141-9331/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +52 9838350300; fax: +52 9838329656.
E-mail addresses: jpizano@gdl.cinvestav.mx (L. Pizano-Escalante), rparra@gdl.

cinvestav.mx (R. Parra-Michel), jvazquez@uqroo.edu.mx (J. Vázquez Castillo),
olongoria@iteso.mx (O. Longoria-Gandara).

1 Tel.: +52 33 3777 3600x1020; fax: +52 333777360.
2 Tel.: +52 3336693598; fax: +52 3336693511.

Microprocessors and Microsystems 39 (2015) 74–82

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2015.01.008&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2015.01.008
mailto:jpizano@gdl.cinvestav.mx
mailto:rparra@gdl.cinvestav.mx
mailto:rparra@gdl.cinvestav.mx
mailto:jvazquez@uqroo.edu.mx
mailto:olongoria@iteso.mx
http://dx.doi.org/10.1016/j.micpro.2015.01.008
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


2. Bit-accurate RSR based on concatenation of square root and
division operators

2.1. Importance of bit accuracy in fixed-point algorithms

Real applications oriented to mobile devices rely on FxP arith-
metic [6,19]. Therefore, it is very important to assure that mathe-
matical operations are optimally implemented. As this concept is
hard to manage, it is normal to talk about optimality of a digital
design in terms of a cost function that depends on several factors:
(a) accuracy of the given result, (b) area resources, (c) clock cycles
required, (d) maximum clock frequency attainable, and (e) power
consumption. While the last four metrics are well-known and
widely used for comparing architectures’ performance, the accura-
cy metric is not usually discussed in detail. Therefore, the following
discussion could serve to clarify this concept.

An important issue related with FxP implementations is to
determine how much FxP format affects the numerical accuracy
of the algorithm being implemented. Numerical errors or an incor-
rect selection in the FxP format will degrade the system perfor-
mance. The standard way to analyze the numerical accuracy of a
FxP architecture is through simulations using the well-known
DSP techniques proposed in [20,7]. These analysis takes as figure
of merit the signal-to-quantization-noise ratio (SQNR), which is
defined in this context as the logarithm of the ratio between the
power of the signal, Ps, and the power of the error, Pe, as follows:

SQNR ¼ 10log10
Ps
Pe

� �
: ð1Þ

Assuming ergodicity, Ps and Pe can be calculated with

Ps ¼ 1
N

XN

i¼1

Vfp2
i ;

Pe ¼ 1
N

XN

i¼1

Vfpi � Vxpið Þ2; ð2Þ

where Vfpi and Vxpi are the FP value and FxP value, respectively, of
the ith result and N is the number of experiments. SQNR value is
application dependent, thus it is not possible to know in advance
either the minimum number of bits in the FxP representation of
the numerical values, or the minimum value of the SQNR required
to guarantee system performance.

On the other hand, a more demanding accuracy metric can be
defined as being bit-accurate. It means that the algorithm is cap-
able of providing the exact k bits obtained by rounding the FP
result. This requirement arises in any deterministic math process-
ing where the expected result should provide a minimum SQNR for
any single value (depending on the bit width), and not an average
SQNR. This approach, while requiring more resources, provides the
maximum attainable SQNR for a given precision. The aim of this
paper is to provide a bit-accurate RSR. However, as this accuracy
metric has not been addressed extensively in the open literature,
it is presented in the following subsection.

2.2. Background on SR and divider

Square root and division operations can be implemented with a
wide variety of algorithms [21]. These algorithms produce different
architectures and they are adequate for different applications. In
FxP applications, high-throughput architectures with moderate
hardware resources are required. One approach for meeting this
requirement consists of having architectures with a simple struc-
ture that runs at high clock frequency, and the high throughput
is achieved by pipelining the algorithm. For this approach, the
FxP SR algorithm proposed in [11] is the simplest and most cited

option. For the division operation, on the other hand, the coordi-
nate rotation digital computer (CORDIC) is the approach that is
most often referenced [15]. The FxP SR approach in [11], with a
word length input of k bits, will produce a result with a length of
k bits after k iterations. CORDICs with a word length input of k bits
also produce a result of k bits after k iterations.

High-radix approaches produce more than one bit per iteration
at the cost of increasing the amount of hardware required. In addi-
tion, the quotient digit selection function becomes more compli-
cated and the time for each iteration also increases [21]; as a
consequence, the frequency operation decreases. In the case of
the pipelined implementation, the amount of hardware required
is significantly increased. In order to compare the proposed algo-
rithm with the straightforward approach, the architecture present-
ed in [11] has been selected for the implementation of the SR
algorithm while the CORDIC for the division algorithm, hereafter
referred to as concatenated RSR (CRSR). This choice is based on
the fact that this approach represents the extreme case of a very
fast and simple architecture with few iterations. However, as the
results provided by the original works are not bit-accurate, these
algorithms have to be analyzed in this context. The analysis is pre-
sented in the following paragraphs.

2.3. A bit-accurate CRSR

The original SR implementation in [11] has been modified in
this paper to produce a final result of k bits while being bit-accu-
rate. To achieve this modification, the iterations must be increased
to kþ 1 and the least significant bit is used for rounding the result.
In this way, the algorithm in [11] can provide k accurate bits after
kþ 2 iterations.

Even though CORDICs are discussed extensively in the lit-
erature, the important characteristic of their inaccuracy is not
addressed. Thus, CORDICs are employed with an input and internal
word length of k bits, which provides a result of k bits after k itera-
tions [15]. However, as it has been previously commented, this
result is not bit-accurate and the error in the result is not reduced
significantly when the number of iterations is increased [21]. In
order to produce a bit-accurate result with CORDICs in the division
mode for an input word with 16 bits, both the internal word length
and the number of iterations have to be increased. This study con-
cludes that performing the division operation with 16 bits of preci-
sion using CORDICs takes 32 iterations and requires 32 bits of
internal word length.

In addition to these modifications, when the requirement is to
produce an accurate 16-bit RSR, the number of bits passed to the
CORDIC from the SR module must increase to 28. According to
the performance commented above, the SR performs 28 iterations
to provide 28 accurate bits for the CORDIC, and this block then per-
forms 32 iterations. The final count shows that the CRSR imple-
mentation requires 60 clock cycles to produce a 16-bit-accurate
result. Fig. 1 shows the basic hardware modules of the CRSR
architecture.

In Fig. 1 the input data is first processed in the SR block, which is
made up of two barrel shifters and one adder/subtracter
(ADD=SUB), and whose operation is described in detail in [11].
The algorithm is iterated 26þ 1 times, in order to provide the extra
bit required for rounding operations, which are carried out in the
28th clock cycle. The result of the first block is then passed to
the divider block. This block implements the operation Num=Den
employing the CORDIC algorithm in vectoring mode, where
Num ¼ 0x0800 and Den corresponds to the result given by the
SR block. The CORDIC is made up of two sub-blocks. Sub-block 1
(SB1) implements the rotation of the data, while the sign S of the
rotation (the most significant bit of the rotated data) is used to

L. Pizano-Escalante et al. / Microprocessors and Microsystems 39 (2015) 74–82 75



Download English Version:

https://daneshyari.com/en/article/462568

Download Persian Version:

https://daneshyari.com/article/462568

Daneshyari.com

https://daneshyari.com/en/article/462568
https://daneshyari.com/article/462568
https://daneshyari.com

