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a b s t r a c t 

The stochastic direct simulation method is a numerical scheme for approximating the so- 

lutions of ordinary differential equations by path simulations of certain associated Markov 

jump processes. Its particular features make it suitable especially when applied to ODE 

systems originating from the spatial discretization of PDEs. The present paper provides 

further improvements to this basic method, which are based on the predictor–corrector 

principle. They are made possible by the fact that in its context a full path of the jump 

process is computed. With this full set of data one can perform either Picard iterations, 

Runge–Kutta steps, or a combination, with the goal of increasing the order of convergence. 

The improved method is applied to standard test problems such as a reaction–diffusion 

equation modeling a combustion process in 1D and 2D as well as to the radiation–diffusion 

equations, a system of two partial differential equations in two space dimensions which is 

very demanding from the computational point of view. Further optimization aspects which 

are also discussed in this paper are related to the efficient implementation of sampling al- 

gorithms based on Huffman trees. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Works such as [11] and [4] have demonstrated the possibility of approximating the solutions of n -dimensional systems 

of ordinary differential equations ˙ X = F (X ) , F = (F i ) 
n 
i =1 

by suitable Markov jump processes. The characterization of Markov 

processes by their infinitesimal generators and the estimation of the martingale terms (trendless stochastic perturbation 

of the average deterministic dynamics) by the techniques from these papers yields a central limit theorem which gives 

the theoretical background for the approximation result. This approximation property can be exploited in order to develop 

numerical schemes for ODE systems by simulating the paths of these Markov processes. 

A special choice of jump process is that in which only one component is changed at a time, by an increment of ±1/ N , 

where N is a resolution parameter corresponding to the weight of a ‘numerical particle’. This procedure can be implemented 

by the following scheme, referred to as the stochastic simulation method [5,6] or the direct ODE simulation algorithm (dODE) 

[8] : 

∗ Corresponding author. Tel.: +492319112260. 

E-mail addresses: flavius.guias@fh-dortmund.de (F. Guia ̧s ), pavel.eremeev@tu-dortmund.de (P. Eremeev). 

http://dx.doi.org/10.1016/j.amc.2016.05.033 

0 096-30 03/© 2016 Elsevier Inc. All rights reserved. 

http://dx.doi.org/10.1016/j.amc.2016.05.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2016.05.033&domain=pdf
mailto:flavius.guias@fh-dortmund.de
mailto:pavel.eremeev@tu-dortmund.de
http://dx.doi.org/10.1016/j.amc.2016.05.033


354 F. Guia ̧s , P. Eremeev / Applied Mathematics and Computation 289 (2016) 353–370 

1. Given the state x N = x N (t) of the Markov process at time t : 
2. Choose a component i with probability proportional to | F i ( x N )| . 
3. The waiting time is given by δt = − log U/λ, where U is a uniformly distributed RV on (0, 1) 

and λ = N 

∑ n 
j=1 | F j (x N ) | . The time step δt is exponentially distributed with parameter λ. 

4. Update the value of the time variable: t = t + δt. 
5. Update the value of the sampled component: x N,i �→ x N,i + 

1 
N sign (F i (x N )) . 

6. Update the values F j ( x N ) for all j for which F j ( x N ) depends on the sampled component i . 
7. GOTO 1. 

One can note that the random time steps δt are automatically adapted, and that after incrementing the time by this 

quantity, one updates the value of only one of the components of the system. The component i which has to be updated 

is chosen at random, with probability proportional to | F i ( x N )|, i.e., with the absolute value of the right hand side of the 

corresponding equation. Note that the time steps �t used by deterministic schemes are typically larger and that in this case 

one updates all components at once at the given time step. 

The first to use the above stochastic approach in order to approximate ODEs modeling coupled chemical reactions was 

Gillespie in [5] and several follow-up papers summarized in [6] . The main improvement, introduced also by Gillespie, was 

the so-called tau-leap method, in which one computes basically the number of jumps of each type in a given (larger) time- 

interval and then performs all transitions at once. The convergence of this method was rigorously analyzed by other authors 

in [1] . 

Taking a look at the (dODE) scheme, it is clear that for large system dimensions n , this method is computationally 

affordable only if in step 6 one has to update O (1) components. This condition is fulfilled in the case that the ODE system 

is a spatially discretized version of a partial differential equation. The paper [8] analyses the applicability of this scheme 

to several one-dimensional partial differential equations. In approximating diffusive dynamics this scheme turned out to 

be faster and to have smaller stochastic fluctuations than other stochastic simulations schemes approximating the same 

dynamics: random walk or flux simulation. Moreover, in contrast to explicit deterministic methods, the (dODE) method 

turned out to be stable also on nonuniform grids. This feature allowed the use of adapted grids or even moving grids for 

diffusion–transport dynamics described, for example, by the Burgers equation. Finally, the method turned out to be able to 

approximate also a free-boundary problem, namely the Black–Scholes equation for American put options. 

A crucial element which influences the efficiency of the (dODE) scheme is the sampling step 2. The paper [8] was con- 

cerned mainly with the approximation aspects of the method and less with an optimal implementation which would en- 

hance its performance. This was the main reason which restricted the numerical investigations only to one-dimensional 

PDEs. 

The present paper presents a further development of the method discussed above. By taking a close look at the (dODE) 

algorithm, one realizes that it performs a complete path simulation of the n -dimensional Markov jump process, a feature 

which is not fully exploited. The user of any numerical method is usually interested in the values at given times, separated, 

say, by a constant increment �t . Standard deterministic schemes (explicit or implicit) compute the value X(t + �t) by 

knowing the value of X ( t ) and, in the case of multistep methods, also other values at past moments from the discrete vector 

of time steps. However, the (dODE) method, in order to compute the value X(t + �t) , has to perform the simulation of 

a full path of a Markov jump process between X ( t ) and X(t + �t) in order to approximate the value at the end of this 

time interval. This feature can be used to improve the order of convergence in at least two ways, based on the predictor–

corrector principle. In both situations we evaluate the function F corresponding to the right hand side of the ODE system at 

the paths simulated by (dODE), which serve as predictor. Then, by computing the integrals of these quantities (integrals of 

step functions) we can obtain improved approximations. 

The first approach consists in performing a Picard iteration: 

x N (t + �t) = x N (t) + 

∫ t+�t 

t 

F ( ̃  x N (s )) ds (1) 

where ˜ x N (s ) for s ∈ [ t , t + �t ] is the path simulated employing (dODE) with initial value x N ( t ). The computation of the 

integral is possible, since F ( ̃  x N (s )) is an n -dimensional, vector valued step function, which in fact is known. For comparison, 

note that the explicit Euler method reads 

x (t + �t) = x (t) + F (x (t ))�t = x (t ) + 

∫ t+�t 

t 

F (x (t)) ds. (2) 

It can be seen that here one integrates only the (constant) function with value given by F ( x ( t )), while in the new method 

we integrate in time a step function which is completely known and is apriori a better approximation of the solution of the 

system of ODEs over the whole interval of integration [ t , t + �t ] than the constant value used in the Euler scheme. 

The second approach consists in a Runge–Kutta step: 

x N (t + �t) = x N (t) + 

∫ t+�t 

t 

˜ P (s ) ds (3) 
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