
A hybrid multiple-character transition finite-automaton for string
matching engine

Chien-Chi Chen, Sheng-De Wang ⇑
National Taiwan University, 1, Roosevelt Road Section 4, Taipei 106, Taiwan

a r t i c l e i n f o

Article history:
Available online 17 February 2015

Keywords:
String matching
Deterministic and nondeterministic finite
automaton
Aho-Corasick algorithm
Network intrusion detection system

a b s t r a c t

The throughput of a string-matching engine can be multiplied up by inspecting multiple characters in
parallel. However, the space that is required to implement a matching engine that can process multiple
characters in every cycle grows dramatically with the number of characters to be processed in parallel.
This paper presents a hybrid finite automaton (FA) that has deterministic and nondeterministic finite
automaton (NFA and DFA) parts and is based on the Aho-Corasick algorithm, for inspecting multiple char-
acters in parallel while maintaining favorable space utilization. In the presented approach, the number of
multi-character transitions increases almost linearly with respect to the number of characters to be
inspected in parallel. This paper also proposes a multi-stage architecture for implementing the hybrid
FA. Since this multi-stage architecture has deterministic stages, configurable features can be introduced
into it for processing various keyword sets by simply updating the configuration. The experimental
results of the implementation of the multi-stage architecture on FPGAs for 8-character transitions reveal
a 4.3 Gbps throughput with a 67 MHz clock, and the results obtained when the configurable architecture
with two-stage pipelines was implemented in ASICs reveal a 7.9 Gbps throughput with a 123 MHz clock.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

String matching is used in many applications, such as in net-
work intrusion detection systems (NIDS), and its efficiency domi-
nates the performance of such applications. String matching
typically includes exact string matching and regular expression
matching; exact string matching is more efficient but less powerful
than regular expression matching in searching for keywords in a
text. The string matching algorithm of Aho and Corasick processes
multiple keywords simultaneously, and locates all instances of the-
se keywords in an n-character text with time complexity O(n) [1].
Some applications like NIDS that must inspect a data stream on-
line firstly use exact string matching to filter out suspicious data,
and then use regular expression string matching to verify the fil-
tered out data.

A hardware string-matching engine that is based on the AC-al-
gorithm can effectively accelerate string matching in network
applications [2–5]. However, network bandwidth is increasing as
communication and integrated circuit technologies advance, so
the performance of string-matching engines must also be

improved to keep up with network throughput. Greatly increasing
throughput in string matching depends on developing a hardware
string-matching engine that can inspect multiple characters in
parallel.

A string matching engine that is based on the AC-algorithm can
be implemented in two ways: the first uses a deterministic finite
automaton (DFA) and the second uses a nondeterministic finite
automaton (NFA). In the DFA approach, a generalized architecture
can be developed for processing various sets of keyword. This
architecture is deterministic. Accordingly, the generalized archi-
tecture based on the DFA approach can be designed as a standalone
device, which can be utilized for various keyword sets. However,
the hardware efficiency of the DFA approach is poor, and the
required space typically increases exponentially with the number
of characters that are being inspected in parallel. The NFA approach
is more efficient than the DFA approach in terms of hardware uti-
lization, and the required space increases in proportional to the
number of characters that are being inspected in parallel.
Nevertheless, the hardware architecture varies with keyword sets
in the NFA approach; accordingly, the NFA approach can be imple-
mented only in programmable devices, such as FPGAs.

This paper proposes a hybrid approach, based on the AC-algo-
rithm, that combines the NFA and DFA methods to provide the
advantages of both hardware efficiency and a deterministic
architecture. The proposed approach transforms an AC-trie, which

http://dx.doi.org/10.1016/j.micpro.2015.01.003
0141-9331/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: Department of Electrical Engineering, BL-523 National
Taiwan University 1, Roosevelt Road Section 4, Taipei 106, Taiwan. Tel.: +886 2
33663579.

E-mail address: sdwang@ntu.edu.tw (S.-D. Wang).

Microprocessors and Microsystems 39 (2015) 122–134

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2015.01.003&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2015.01.003
mailto:sdwang@ntu.edu.tw
http://dx.doi.org/10.1016/j.micpro.2015.01.003
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


is a prefix tree that is based on the AC-algorithm, into a hybrid
finite automaton, called AC-FA, that has NFA and DFA parts. The
proposed hybrid AC-FA is converted into a multi-character hybrid
AC-FA by iteratively performing concatenation operations, for the
purpose of processing multiple characters in parallel. We have pre-
viously developed the algorithm for deriving multi-character tran-
sitions [6,7]. The states in an AC-trie with the same depth are
grouped in the same level, and a level nearer to the root state is
lower; the NFA part comprises the lower states. Since most states
of an AC-trie are at lower levels, which belong to the NFA part, the
growth of the number of transitions of a k-character AC-FA is
almost linear with respect to k when the number of level in the
NFA part is high enough.

This paper then develops a multi-stage architecture for imple-
menting the proposed hybrid AC-FA. The transitions are grouped
into stages based on their levels. The number of stages of the pro-
posed multi-stage architecture is determined by the number of
levels in the NFA part and the number of characters to be inspected
in parallel. Since the number of stages can be determined as
required, the proposed multi-stage architecture is further made
into a configurable architecture that can be configured to process
various keyword sets. The proposed configurable architecture can
be utilized as a stand-alone device.

The proposed architecture is evaluated on FPGA and ASIC
devices. The results of the evaluation reveal that the throughput
and the hardware cost increase approximately linearly with
respect to the number of characters to be inspected in parallel. In
the implementation of k-character multi-stage architecture, for
k ¼ 8, the throughput is approximately 6.1 times and the hardware
cost is approximately 2.7 times those for k ¼ 1. The 8-character
hybrid AC-FA with 300 keywords can be implemented with a
66.6 MHz clock and the achieved throughput is approximately
4.3 Gbps. The 8-character configurable architecture, including
512 rule units, can be implemented with a 54.18 MHz clock and
the obtained throughput is approximately 3.5 Gbps. The proposed
configurable architecture is also improved using the pipeline
method. The 8-character configurable architecture with two-stage
pipelines can be implemented at a clock rate of 123.44 MHz and
the obtained throughput is approximately 7.9 Gbps, and the per-
formance is roughly doubled that of the original configurable
architecture. The main contributions of this paper are summarized
as follows.

– The proposed multi-character hybrid AC-FA approach has the
feature that the number of transitions increases almost linearly
with respect to the number of characters to be inspected in
parallel.
– A configurable architecture is developed, based on the pro-
posed multi-stage architecture; it can process various keyword
sets by simply updating the configuration data.

The rest of this paper is organized as follows. Section 2 reviews
work on string matching. Section 3 briefly describes the AC-algo-
rithm, and then develops the hybrid AC-FA and its implementation.
Section 4 describes the construction of multi-character transitions
and proposes a multi-stage architecture to implement the con-
structed multi-character transitions. Section 5 proposes the config-
urable architecture of the multi-character matching engine.
Section 6 evaluates and discusses the proposed approach. Finally,
Section 7 draws conclusions.

2. Related work

Many hardware-based approaches that are based on the AC-al-
gorithm have been developed for accelerating string matching and

these fall into two broad categories. One category focuses on
improving the efficiency of hardware utilization because the AC-al-
gorithm is a memory-exhausting algorithm, while the other focus-
es on improving the throughput of string matching, by increasing
the clock rate of the hardware or by inspecting multiple characters
simultaneously.

Owing to the progress and flexibility of the programmable
devices such as FPGAs, developers can design and evaluate variant
architectures according to the features of the AC-algorithm.
However, the resources of programmable devices are limited, so
hardware efficiency is important. To improve the memory efficien-
cy, Tuck et al. proposed a bitmap-compression and path-compres-
sion approach to implement the AC-algorithm that effectively
reduces the required memory and improves the performance of
hardware implementation [8]. Zha and Sahni improved the bit-
map-compression and path-compression approach such that it uti-
lized much less memory [9]. Alicherry et al. implemented the AC-
algorithm by integrating a ternary content addressable memory
(TCAM) and an SRAM that utilizes the ternary matching of TCAM
to match characters in negation expressions, subsequently reduc-
ing the space that is required for storing the state transitions [3].
Pao et al. and Lin and Liu developed pipeline architectures to imple-
ment an AC-trie that contains only goto functions of the AC-trie to
reduce the space that is caused by extending failure functions
[10,11]. Nan Hua et al. proposed another approach that was based
on a block-oriented scheme, rather than the typical byte-oriented
processing of patterns, to minimize the memory-usage [4]. The
approach of Dimopoulos et al. partitions an entire AC-trie into
numerous smaller tries to increase memory efficiency [12].
Nakahara improved the hardware efficiency of the implementation
of regular expression matching by using the AC-algorithm to pro-
cess shared patterns [2]. Becchi et al. presented a hybrid FA that
combines the advantages of DFA and NFA to improve regular
expression matching [13].

To multiply the throughput of string matching for a fixed same
operating rate, some attempts have been made to develop string
matching architectures that can inspect multiple characters in par-
allel. Such an architecture must account for both the complexity of
hardware and the alignment problem, which arises in the k-char-
acter matching processes. Sugawara et al. developed a string
matching method called suffix-based traversing (SBT), which
extends the AC-algorithm to process multiple input characters in
parallel and to reduce the size of the lookup table [14]. Alicherry
et al. proposed a k-compressed AC-DFA to realize a k-character
matching engine [3]. Some works have utilized multiple FSMs to
achieve parallelism and solve the alignment problem; in these,
each FSM processes a pattern, beginning at a different position,
and then the matching results of the FSMs are combined using a
specific logic [5,15,16]. Yamagaki et al. utilized additional states
and transitions to solve the alignment problem [17].

3. Aho-Corasick algorithm and hybrid finite automaton

This section firstly describes the AC-algorithm. Then the origi-
nal AC-trie is converted to a hybrid AC-FA which comprises an
NFA part and a DFA part. Thereafter, the operations of the original
AC-trie and the proposed hybrid AC-FA are explained and com-
pared with each other. Finally, the proposed hybrid AC-FA is
extended to a multi-character hybrid FA.

3.1. Aho-Corasick algorithm

The AC-trie that is shown in Fig. 1 is constructed with the key-
word set {enhappy, happy, happen, happygo}, which is used as an
example to explain the proposed approach. In the figure, the

C.-C. Chen, S.-D. Wang / Microprocessors and Microsystems 39 (2015) 122–134 123



Download English Version:

https://daneshyari.com/en/article/462572

Download Persian Version:

https://daneshyari.com/article/462572

Daneshyari.com

https://daneshyari.com/en/article/462572
https://daneshyari.com/article/462572
https://daneshyari.com

