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The energy of a graph is defined as the sum of the absolute values of all eigenvalues of the 

graph. Let T n,p , T n,d be the set of all trees of order n with p pendent vertices, diameter d , 

respectively. In this paper, we completely characterize the trees with second-minimal and 

third-minimal energy in T n,p ( T n,d , respectively) for 4 ≤ p ≤ n − 9 ( 10 ≤ d ≤ n − 3 , respec- 

tively), which solves the problems left in Ma (2014). 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Let G be a simple graph with n vertices, and λ1 , λ2 , . . . , λn be the eigenvalues of its adjacency matrix. Then the energy 

of G is defined as 

E = E(G ) = 

n ∑ 

i =1 

| λi | . 

Let G be an acyclic graph of order n . Then E ( G ) can be expressed as the Coulson integral formula [11] 

E(G ) = 

2 

π

∫ + ∞ 

0 

1 

x 2 
log 

[ � n 2 � ∑ 

k =0 

m (G, k ) x 2 k 

] 

dx, 

where m ( G , k ) denotes the number of k -matchings in G and m (G, 0) = 1 . Follow [15] , denote 

m 

+ (G, x ) = 

� n 2 � ∑ 

k =0 

m (G, k ) x 2 k . 

Then for a tree T with n vertices, we have 

E(T ) = 

2 

π

∫ + ∞ 

0 

1 

x 2 
log m 

+ (T , x ) dx. (1) 

Since the energy of a graph can be used to approximate the total π-electron energy of the molecular, it has been inten- 

sively studied. For details on graph energy, we refer the readers to the book [18] and reviews [8,10] . One of the fundamental 

question that is encountered in the study of graph energy is which graphs (from a given class) have minimal and maximal 

∗ Corresponding author. Tel.: +86 15152187276; fax: +86 51683403153. 

E-mail addresses: bmbai@163.com (Y. Bai), hpma@163.com , mahp@jsnu.edu.cn (H. Ma). 

http://dx.doi.org/10.1016/j.amc.2016.04.006 

0 096-30 03/© 2016 Elsevier Inc. All rights reserved. 

http://dx.doi.org/10.1016/j.amc.2016.04.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2016.04.006&domain=pdf
mailto:bmbai@163.com
mailto:hpma@163.com
mailto:mahp@jsnu.edu.cn
http://dx.doi.org/10.1016/j.amc.2016.04.006


50 Y. Bai, H. Ma / Applied Mathematics and Computation 286 (2016) 49–56 

energies. A large number of papers were published on such extremal problems, see Chapter 7 in [18] and some recent pa- 

pers [9,12,13,15–17,19–30] . There are many other kinds of graph energies, such as matching energy [1–3] , Laplacian energy 

[4] , distance energy [5] , Randi ́c energy [6,14] , incidence energy [6] , etc. 

For terminology and notation not defined here, we refer to [20] . A caterpillar is a tree in which a removal of all pendent 

vertices makes a path. Let T (n, d; n 1 , n 2 , . . . , n d−1 ) be a caterpillar obtained from a path v 0 v 1 . . . v d by adding n i ( n i ≥ 0) 

pendent edges to v i (i = 1 , . . . , d − 1) . For 1 ≤ i ≤ d − 1 , denote T n,d,i = T (n, d; 0 , . . . , 0 , n i = n − d − 1 , 0 , . . . , 0) . 

Gutman [7] proved that the star S n and the path P n have minimal and maximal energy among all trees of order n , 

respectively. Let T n,d be the set of all trees with n vertices and diameter d , where 2 ≤ d ≤ n − 1 . The trees with minimal and 

second-minimal energies in T n,d have been considered by Li and Li [16,17] , Shan and Shao [24] , Wang and Kang [26] , Yan 

and Ye [27] and Zhou and Li [30] . Let T n,p be the set of all trees of order n with p pendent vertices, where 2 ≤ p ≤ n − 1 . 

The tree with minimal energy in T n,p has been determined by Yu and Lv [29] and Ye and Yuan [28] independently. By the 

results in [27–29] , the trees with minimal energy in T n,d and T n,n −d+1 are the same for all 2 ≤ d ≤ n − 1 . In [20] , one of 

the present authors gave the further relations on the ordering of trees by minimal energies between T n,d and T n,n −d+1 , and 

completely characterized the trees with second-minimal and third-minimal energy in T n,p ( T n,d , respectively) except for the 

case 4 ≤ p ≤ n − 9 ( 10 ≤ d ≤ n − 3 , respectively). By Ma [20] , the trees with second-minimal and third-minimal energy in 

T n,p and T n,n −p+1 are the same, respectively, for 4 ≤ p ≤ n − 9 , and the results on T n,p are the following: 

Theorem 1.1 ( [20] ) . Suppose that 4 ≤ p ≤ n − 9 . Then the second-minimal energy tree in T n,p is one of the two trees T n,n −p+1 , 3 

and T (n, n − p + 1 ; p − 3 , 0 , . . . , 0 , 1) . 

Theorem 1.2 ( [20] ) . Suppose that 4 ≤ p ≤ n − 9 . If E(T n,n −p+1 , 3 ) > E(T (n, n − p + 1 ; p − 3 , 0 , . . . , 0 , 1)) , then T n,n −p+1 , 3 is the 

unique tree with third-minimal energy in T n,p ; If E(T n,n −p+1 , 3 ) < E(T (n, n − p + 1 ; p − 3 , 0 , . . . , 0 , 1)) , then the third-minimal 

energy tree in T n,p is one of the two trees T n,n −p+1 , 5 and T (n, n − p + 1 ; p − 3 , 0 , . . . , 0 , 1) . 

From Theorems 1.1 and 1.2 , one can see that for 4 ≤ p ≤ n − 9 , the author of [20] could not determine the unique ex- 

tremal graph, respectively. In this paper, we will use the Coulson integral formula to solve the above unsolved problems. We 

only state our results on T n,p instead of T n,d . 

The rest of this paper is organized as follows. In Section 2 , we give some preliminary results. In Section 3 , we characterize 

the trees with second-minimal energy in T n,p for 4 ≤ p ≤ n − 9 . In Section 4 , we determine the trees with third-minimal 

energy in T n,p for 4 ≤ p ≤ n − 9 . 

2. Preliminaries 

The following five results on properties of m 

+ (G, x ) appeared in [15] . 

Lemma 2.1. Let v be a vertex of graph G and N(v ) = { v 1 , v 2 , . . . , v j } the set of all neighbors of v in G. Then 

m 

+ (G, x ) = m 

+ (G − v , x ) + x 2 
∑ 

v i ∈ N(v ) 

m 

+ (G − v − v i , x ) . 

Lemma 2.2. Let P t be the path on t vertices. Then 

(1) m 

+ (P t , x ) = m 

+ (P t−1 , x ) + x 2 m 

+ (P t−2 , x ) , f or any t ≥ 1 , 

(2) m 

+ (P t , x ) = (1 + x 2 ) m 

+ (P t−2 , x ) + x 2 m 

+ (P t−3 , x ) , f or any t ≥ 2 . 

The initials are m 

+ (P 0 , x ) = m 

+ (P 1 , x ) = 1 , and we define m 

+ (P −1 , x ) = 0 . 

Corollary 2.3. Suppose t ≥ 1 . Then for any real number x , 

m 

+ (P t−1 , x ) ≤ m 

+ (P t , x ) ≤ (1 + x 2 ) m 

+ (P t−1 , x ) . 

Lemma 2.4. For t ≥ −1 , the polynomial m 

+ (P t , x ) has the following form 

m 

+ (P t , x ) = 

1 √ 

1 + 4 x 2 
( λt+1 

1 − λt+1 
2 ) , 

where λ1 = 

1+ 
√ 

1+4 x 2 

2 and λ2 = 

1 −
√ 

1+4 x 2 

2 . 

Lemma 2.5. Suppose t ≥ 0 . If t is even, then 

2 

1 + 

√ 

1 + 4 x 2 
≤ m 

+ (P t , x ) 

m 

+ (P t+1 , x ) 
≤ 1 . 

If t is odd, then 

1 

1 + x 2 
≤ m 

+ (P t , x ) 

m 

+ (P t+1 , x ) 
≤ 2 

1 + 

√ 

1 + 4 x 2 
. 

The following result on real analysis is needed in the next sections. 
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