Solutions to unsolved problems on the minimal energies of two classes of trees

Yongqiang Bai, Hongping Ma*
School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China

A R T I C L E I NFO

Keywords:

Minimal energy
Tree
Pendent vertex
Diameter

Abstract

The energy of a graph is defined as the sum of the absolute values of all eigenvalues of the graph. Let $\mathbb{T}_{n, p}, \mathcal{T}_{n, d}$ be the set of all trees of order n with p pendent vertices, diameter d, respectively. In this paper, we completely characterize the trees with second-minimal and third-minimal energy in $\mathbb{T}_{n, p}\left(\mathcal{T}_{n, d}\right.$, respectively) for $4 \leq p \leq n-9$ (10 $\leq d \leq n-3$, respectively), which solves the problems left in Ma (2014).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a simple graph with n vertices, and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of its adjacency matrix. Then the energy of G is defined as

$$
E=E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

Let G be an acyclic graph of order n. Then $E(G)$ can be expressed as the Coulson integral formula [11]

$$
E(G)=\frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^{2}} \log \left[\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} m(G, k) x^{2 k}\right] d x
$$

where $m(G, k)$ denotes the number of k-matchings in G and $m(G, 0)=1$. Follow [15], denote

$$
m^{+}(G, x)=\sum_{k=0}^{\left\lfloor\frac{n}{\lfloor }\right\rfloor} m(G, k) x^{2 k}
$$

Then for a tree T with n vertices, we have

$$
\begin{equation*}
E(T)=\frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^{2}} \log m^{+}(T, x) d x \tag{1}
\end{equation*}
$$

Since the energy of a graph can be used to approximate the total π-electron energy of the molecular, it has been intensively studied. For details on graph energy, we refer the readers to the book [18] and reviews [8,10]. One of the fundamental question that is encountered in the study of graph energy is which graphs (from a given class) have minimal and maximal

[^0]energies. A large number of papers were published on such extremal problems, see Chapter 7 in [18] and some recent papers [9,12,13,15-17,19-30]. There are many other kinds of graph energies, such as matching energy [1-3], Laplacian energy [4], distance energy [5], Randić energy [6,14], incidence energy [6], etc.

For terminology and notation not defined here, we refer to [20]. A caterpillar is a tree in which a removal of all pendent vertices makes a path. Let $T\left(n, d ; n_{1}, n_{2}, \ldots, n_{d-1}\right)$ be a caterpillar obtained from a path $v_{0} v_{1} \ldots v_{d}$ by adding $n_{i}\left(n_{i} \geq 0\right)$ pendent edges to $v_{i}(i=1, \ldots, d-1)$. For $1 \leq i \leq d-1$, denote $T_{n, d, i}=T\left(n, d ; 0, \ldots, 0, n_{i}=n-d-1,0, \ldots, 0\right)$.

Gutman [7] proved that the star S_{n} and the path P_{n} have minimal and maximal energy among all trees of order n, respectively. Let $\mathcal{T}_{n, d}$ be the set of all trees with n vertices and diameter d, where $2 \leq d \leq n-1$. The trees with minimal and second-minimal energies in $\mathcal{T}_{n, d}$ have been considered by Li and Li [16,17], Shan and Shao [24], Wang and Kang [26], Yan and Ye [27] and Zhou and Li [30]. Let $\mathbb{T}_{n, p}$ be the set of all trees of order n with p pendent vertices, where $2 \leq p \leq n-1$. The tree with minimal energy in $\mathbb{T}_{n, p}$ has been determined by Yu and Lv [29] and Ye and Yuan [28] independently. By the results in [27-29], the trees with minimal energy in $\mathcal{T}_{n, d}$ and $\mathbb{T}_{n, n-d+1}$ are the same for all $2 \leq d \leq n-1$. In [20], one of the present authors gave the further relations on the ordering of trees by minimal energies between $\mathcal{T}_{n, d}$ and $\mathbb{T}_{n, n-d+1}$, and completely characterized the trees with second-minimal and third-minimal energy in $\mathbb{T}_{n, p}\left(\mathcal{T}_{n, d}\right.$, respectively) except for the case $4 \leq p \leq n-9$ ($10 \leq d \leq n-3$, respectively). By Ma [20], the trees with second-minimal and third-minimal energy in $\mathbb{T}_{n, p}$ and $\mathcal{T}_{n, n-p+1}$ are the same, respectively, for $4 \leq p \leq n-9$, and the results on $\mathbb{T}_{n, p}$ are the following:
Theorem 1.1 ([20]). Suppose that $4 \leq p \leq n-9$. Then the second-minimal energy tree in $\mathbb{T}_{n, p}$ is one of the two trees $T_{n, n-p+1,3}$ and $T(n, n-p+1 ; p-3,0, \ldots, 0,1)$.

Theorem 1.2 ([20]). Suppose that $4 \leq p \leq n-9$. If $E\left(T_{n, n-p+1,3}\right)>E(T(n, n-p+1 ; p-3,0, \ldots, 0,1))$, then $T_{n, n-p+1,3}$ is the unique tree with third-minimal energy in $\mathbb{T}_{n, p}$; If $E\left(T_{n, n-p+1,3}\right)<E(T(n, n-p+1 ; p-3,0, \ldots, 0,1))$, then the third-minimal energy tree in $\mathbb{T}_{n, p}$ is one of the two trees $T_{n, n-p+1,5}$ and $T(n, n-p+1 ; p-3,0, \ldots, 0,1)$.

From Theorems 1.1 and 1.2, one can see that for $4 \leq p \leq n-9$, the author of [20] could not determine the unique extremal graph, respectively. In this paper, we will use the Coulson integral formula to solve the above unsolved problems. We only state our results on $\mathbb{T}_{n, p}$ instead of $\mathcal{T}_{n, d}$.

The rest of this paper is organized as follows. In Section 2, we give some preliminary results. In Section 3, we characterize the trees with second-minimal energy in $\mathbb{T}_{n, p}$ for $4 \leq p \leq n-9$. In Section 4 , we determine the trees with third-minimal energy in $\mathbb{T}_{n, p}$ for $4 \leq p \leq n-9$.

2. Preliminaries

The following five results on properties of $m^{+}(G, x)$ appeared in [15].
Lemma 2.1. Let v be a vertex of graph G and $N(v)=\left\{v_{1}, v_{2}, \ldots, v_{j}\right\}$ the set of all neighbors of v in G. Then

$$
m^{+}(G, x)=m^{+}(G-v, x)+x^{2} \sum_{v_{i} \in N(v)} m^{+}\left(G-v-v_{i}, x\right) .
$$

Lemma 2.2. Let P_{t} be the path on t vertices. Then
(1) $m^{+}\left(P_{t}, x\right)=m^{+}\left(P_{t-1}, x\right)+x^{2} m^{+}\left(P_{t-2}, x\right)$, for any $t \geq 1$,
(2) $m^{+}\left(P_{t}, x\right)=\left(1+x^{2}\right) m^{+}\left(P_{t-2}, x\right)+x^{2} m^{+}\left(P_{t-3}, x\right)$, for any $t \geq 2$.

The initials are $m^{+}\left(P_{0}, x\right)=m^{+}\left(P_{1}, x\right)=1$, and we define $m^{+}\left(P_{-1}, x\right)=0$.
Corollary 2.3. Suppose $t \geq 1$. Then for any real number x,

$$
m^{+}\left(P_{t-1}, x\right) \leq m^{+}\left(P_{t}, x\right) \leq\left(1+x^{2}\right) m^{+}\left(P_{t-1}, x\right) .
$$

Lemma 2.4. For $t \geq-1$, the polynomial $m^{+}\left(P_{t}, x\right)$ has the following form

$$
m^{+}\left(P_{t}, x\right)=\frac{1}{\sqrt{1+4 x^{2}}}\left(\lambda_{1}^{t+1}-\lambda_{2}^{t+1}\right)
$$

where $\lambda_{1}=\frac{1+\sqrt{1+4 x^{2}}}{2}$ and $\lambda_{2}=\frac{1-\sqrt{1+4 x^{2}}}{2}$.
Lemma 2.5. Suppose $t \geq 0$. If t is even, then

$$
\frac{2}{1+\sqrt{1+4 x^{2}}} \leq \frac{m^{+}\left(P_{t}, x\right)}{m^{+}\left(P_{t+1}, x\right)} \leq 1
$$

If t is odd, then

$$
\frac{1}{1+x^{2}} \leq \frac{m^{+}\left(P_{t}, x\right)}{m^{+}\left(P_{t+1}, x\right)} \leq \frac{2}{1+\sqrt{1+4 x^{2}}} .
$$

The following result on real analysis is needed in the next sections.

https://daneshyari.com/en/article/4625729

Download Persian Version:
https://daneshyari.com/article/4625729

Daneshyari.com

[^0]: * Corresponding author. Tel.: +86 15152187276; fax: +86 51683403153.

 E-mail addresses: bmbai@163.com (Y. Bai), hpma@163.com, mahp@jsnu.edu.cn (H. Ma).

