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KEJ/V\_/WdSi o The problem of robust adaptive sliding mode control for semi-Markovian jump systems
Semi-Markovian jump systems with actuator faults is investigated in this paper. The uncertainties considered in this pa-
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per satisfy norm-bounded form, and bounds of nonlinearity, actuator faults and external
disturbance are unknown. Then, the influences of the actuator faults, unknown nonlinear-
ity and disturbance can be effectively attenuated via a novel adaptive sliding mode con-
troller. The reachability of sliding mode surface can be guaranteed by the adaptive sliding
mode controller. Using Lyapunov stability theory, sufficient conditions are derived to guar-
antee the stochastic stability of the sliding mode dynamics. Finally, a numerical example
is exploited to demonstrate the effectiveness of the proposed method.
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1. Introduction

Markovian jump systems (M]Ss) are one special type of stochastic switching systems. MJSs exist in the complex practical
dynamical systems subject to abrupt structure variations. Recently, many results about modeling, stability, control and filter
design for MJSs have been reported [1-16]. The authors in [4] designed a controller to stabilize Markovian jump linear sys-
tem over networks with random communication delay. The authors in [9] considered the robust extended dissipative control
problem for sampled-data MJSs. The jump time of system mode obeys exponential distribution in M]Ss, which implies the
transition rate has no connection with jump time. The transition rates of semi-Markovian jump systems (S-MJSs) are related
to jump time, which are different from the constant transition rates in M]Ss. Thus, S-M]Ss are more practical than MJSs in
modeling practical dynamical systems since S-M]Ss are less conservative. More recently, the stochastic stability analysis and
stabilization for S-M]JSs are studied in [17,18]. Moreover, the probability distribution of sojourn time of a Markov chain from
exponential distribution to Weibull distribution was investigated in [19].

In practical systems, however, the actuator failure may occur. Thus, it may cause instability of the control systems and
deteriorate the system performance. Recently, many results on the control systems with partial actuator faults have been
reported [3,20-25]. For example, the problem of event-triggered based fault detection for nonlinear networked control sys-
tems was studied in [26]. To address the systems with sensor fault, the authors in [27] proposed an observer based fault
detection scheme.
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For the uncertain systems, some advanced control strategies have been proposed, including fuzzy control [28-31], adap-
tive control [32-36] and sliding mode control (SMC) [37]. For the uncertain nonlinear networked control systems, an interval
type-2 observer-based control scheme was proposed in [38]. An adaptive optimal control strategy was provided for a cat-
egory of nonlinear uncertain systems with dead zone in [39]. Wang et al in [40] applied the adaptive control design to
fully actuated marine surface vehicles. Among these approaches, SMC has been paid considerable attention [41-45]. SMC
algorithm has been employed to a series of dynamical systems in the past few decades [46,47]. Generally speaking, there
are two basic steps in the design of SMC. First, we construct an appropriate sliding mode surface to make the resulting
sliding mode dynamics have some satisfactory properties. Second, we design an SMC controller to drive the system state
trajectories onto the predefined sliding mode surface. More recently, some remarkable results on the SMC problem have
been achieved in [3,48-58]. To mention a few, the authors investigated the design of SMC subject to packet losses in [54],
which didn’t consider uncertainties, unknown nonlinearities and unknown external disturbance. Using interval type-2 fuzzy
approach to model the considered system, an adaptive sliding mode control was proposed in [59]. Li et al in [60,61] pro-
vided an output-feedback based adaptive sliding model control strategies for fuzzy systems with actuator saturation and
nonlinear Markovian jump systems. The authors in [56] studied the SMC problem of nonlinear singular stochastic systems
with Markovian switching parameters, but not considering uncertainties, unknown nonlinearities and disturbance. Besides,
the authors in [56] did not use weighted sum approach to address different input matrix. The authors in [62] considered
the state estimation and sliding mode control problems for phase-type S-M]JSs and designed a novel sliding mode controller
instead of considering nonlinearities and unknown external disturbances. However, the actuator degradation and external
disturbance are not considered in this paper. In addition, the bounds of nonlinearity, actuator faults and external disturbance
are unknown, which motivates this study.

The aim of this paper is to investigate the problem of adaptive SMC for S-MJSs with parameter uncertainties, distur-
bance, nonlinearity and actuator faults. First, an appropriate common sliding mode surface is constructed by a weighted
sum method such that the resulting reduced-order systems are stochastically stable. Second, the designed adaptive slid-
ing mode controller can guarantee the reachability. Finally, a numerical example is provided to show the effectiveness of
the proposed scheme. The organization of this paper is given as follows. The main problems are formulated in Section 2.
Section 3 designs a common sliding mode surface and Section 4 designs an adaptive sliding mode controller. Section 5 pro-
vides the reachability of sliding mode surface and Section 6 presents a numerical example to demonstrate the validity of
the mentioned method, and finally Section 7 gives the conclusion.

Notations: The superscript “T” represents the matrix transposition, R" shows the n -dimensional Euclidean space. The
notation X > 0 means that X is real symmetric and positive definite. ||-||; and ||-||, refer to the 1-norm and usual Euclidean
vector norm, respectively. The notation diag(-) denotes a diagonal matrix. The vector e; € RS is the ith standard basic vector;
and 1; is consisted of ones; A, (P) and Amax(P) stand for the minimum and maximum eigenvalue of a real symmetric matrix
P, respectively. The notation E{-} represents the mathematical expectation operator. ) represents the Kronecker product. The
notations tr(-) and sgn(-) stand for the trace and sign function, respectively. The notation (2, 7, P) denotes the probability
space. €2, F and P represent the sample space, o-algebra of subsets of the sample space and probability measure on F,
respectively. The symbol “x” represents a term that is induced by symmetry.

2. Problem formulation

Consider the S-MJS in the probability space (2, F, P) as follows:
X(t) = (A(re)) + A AG))x () + B(re) (" (£) + f(x, £) +d(1)), (1)

where x(t) € R" denotes the state, uf (t) e R™ stands for fault control input, f(x,t) € R™ is nonlinearity and d(t) € R™ de-
notes disturbance. A(r;) e R™" and B(r;) € R™™ are constant system matrices, respectively. A A(r;) € R™" indicates the
system uncertainties. {r;, t > 0} represents a continuous-time semi-Markovian process with taking values in a discrete set
S=1{1,2,...,s}. The transition rate matrix I1 = (77;j)sxs is given as

i (DI +o(l), 1# ],

Prir€+D =jlr®) =i = {1 + (Dl +o(l), i =]

where | > 0, lim_ "(Ii =0, and () = O denotes the transition rate from mode i to mode j for i # j, and 7;(l) =
= X1, (D

Remark 1. The probability distribution of sojourn time is exponential distribution in M]JS, which is distinguished from
S-MJS [63,64]. Its probability distribution of sojourn time is Weibull distribution such that the transition rate is time vary-
ing. In practice, the time-varying transition rate (1) is generally bounded as 7;; < 7;;(I) < 7;;, where 7;; and 7;; are real
constant scalars, respectively.

Considering ith mode (i=1,2,...,s), we represent S-M]JS (1) in the following form:

X(t) = (A + A A)X(©) +Bi(uF (1) + f(x, ) + (1)), (2)
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