Odd components of co-trees and graph embeddings

Han Ren ${ }^{\text {a,b }}$, Fugang Chao ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Department of Mathematics, East China Normal University, Shanghai 200062, PR China
${ }^{\text {b }}$ Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, Shanghai 200062, PR China
${ }^{\text {c }}$ Department of Mathematics, Shanghai University, Shanghai 200444, PR China

A R T I C L E I N F O

Keywords:

Odd component of co-trees
Graph embeddings
Spanning tree

Abstract

In this paper we investigate the relation between odd components of co-trees and graph embeddings. We show that any graph G must share one of the following two conditions: (a) for each integer h such that G may be embedded on S_{h}, the sphere with h handles, there is a spanning tree T in G such that $h=\frac{1}{2}(\beta(G)-\omega(T))$, where $\beta(G)$ and $\omega(T)$ are, respectively, the Betti number of G and the number of components of $G-E(T)$ having odd number of edges; (b) for every spanning tree T of G, there is an orientable embedding of G with exact $\omega(T)+1$ faces. This extends Xuong and Liu's theorem $[9,13]$ to some other (possible) genera. Infinitely many examples show that there are graphs which satisfy (a) but (b). Those make a correction of a result of Archdeacon [2, Theorem 1].

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Graphs here are simple connected. All the terms and notations are standard and may be found in [3].
A surface is a compact 2-manifold. An orientable surface, denoted by S_{g}, is the sphere with g handles. An embedding of a graph G is a drawing of G in a surface Σ such that no edge-crossing is permitted and each component of $\Sigma-G$ is an open disc. Let T be a spanning tree of G. By $\omega(T)$ we mean the number of the components of the co-tree $G-E(T)$ having odd number of edges. It is well known that odd components of co-trees play a key role in graph embeddings and there have been many literatures for it. The following result is due to Xuong and Liu [9,13].

Theorem A. Let G be a graph. Then the maximum genus of G is

$$
\gamma_{M}(G)=\frac{1}{2}(\beta(G)-\min \{\omega(T)\}),
$$

where $\beta(G)$ is the Betti number of G and the min is taken over all the spanning trees in G.
Another well known result is the following Duke's interpolation theorem [5] for genera of orientable surfaces on which a graph may be embedded.

Theorem B. If a graph G may be embedded in S_{h} and $S_{k}(h \leq k)$, then it also may be embedded in S_{g} for $g=h, h+1, \ldots, k$.

[^0]Theorem B says that the genera of orientable surfaces on which a graph may be embedded form a series of consecutive integer numbers. We write $\left[\gamma(G), \gamma_{M}(G)\right]$ as the genera interval of a graph G, where $\gamma(G)$ and $\gamma_{M}(G)$ are, respectively, the minimum genus (or genus in short) and the maximum genus of G.

One of the main results of this paper is to establish an interpolation theorem for odd components of co-trees in a graph, i.e., the following

Theorem 1. Let G be a graph with two spanning trees T_{1} and T_{2}. Then we have that
(a) $\omega\left(T_{1}\right) \equiv \omega\left(T_{2}\right)(\bmod 2)$ and
(b) for each integer m with $\omega\left(T_{1}\right) \leq m \leq \omega\left(T_{2}\right)$ and $m \equiv \omega\left(T_{1}\right)$, there is a spanning tree T in G such that $\omega(T)=m$.

If we denote $g=\frac{1}{2}(\beta(G)-\omega(T))$ for each spanning tree T in G, then Theorem 1 shows that all the integers defined this way form a collection of consecutive integers. Define $\left[g_{m}(G), g_{M}(G)\right]$ as the odd components interval of G, where

$$
\begin{aligned}
& g_{m}(G)=\frac{1}{2}(\beta(G)-\max \{\omega(T)\}) \\
& g_{M}(G)=\frac{1}{2}(\beta(G)-\min \{\omega(T)\})
\end{aligned}
$$

It follows from Theorem A that $g_{M}=\gamma_{M}(G)$. Thus, we have that for each graph G, either $\left[\gamma(G), \gamma_{M}(G)\right] \subseteq\left[g_{m}(G), g_{M}(G)\right]$ or $\left[g_{m}(G), g_{M}(G)\right] \subseteq\left[\gamma(G), \gamma_{M}(G)\right]$. If $\left[\gamma(G), \gamma_{M}(G)\right] \subseteq\left[g_{m}(G), g_{M}(G)\right]$, then for every surface S_{h} with $\gamma(G) \leq h \leq \gamma_{M}(G)$, there is a spanning tree T such that

$$
h=\frac{1}{2}(\beta(G)-w(T)) .
$$

Otherwise, for each spanning tree T in G, there is an orientable surface S_{h} on which G may be embedded and have exact $\omega(T)+1$ faces, i.e., the following

Theorem 2. Let G be a connected graph with the parameters $\gamma(G), \gamma_{M}(G), g_{m}$ and g_{M} defined as above. Then G must satisfy one of the following conditions:
(a) for every surface S_{h} on which G may be embedded, there is a spanning tree T in G such that $h=\frac{1}{2}(\beta(G)-\omega(T))$;
(b) for every spanning tree T of G, G may be embedded in some orientable surface which has exact $\omega(T)+1$ faces.

Remark (1). Theorem 2 does extend Xuong and Liu's result to some other (possible) surfaces since for each integer $h \in$ $\left[\gamma(G), \gamma_{M}(G)\right] \cap\left[g_{m}(G), g_{M}(G)\right]$, there is a spanning tree T such that $h=\frac{1}{2}(\beta(G)-\omega(T)) ;(2)$ the readers with care may notice that the partial result of Theorem 2 (i.e., (b) of Theorem 2) was stated in Archdeacon's paper [2]. Here, what we will see is that there are infinitely many graphs which do not satisfy the condition (b) of Theorem 2 . Hence, Theorem 2 also makes a correction of a result in [[2], Theorem 1]. (3) Theorem 2 may find its uses in graphs with a spanning tree whose co-tree has large number of odd components. In particular, we have the following result:

Corollary 3. Let G be a cubic hamiltonian graph. If G is nonplanar, then for every orientable surface S_{g} on which G may be embedded, there is a spanning tree T in G such that $g=\frac{1}{2}(\beta(G)-\omega(T))$.

2. Proof of main results

In this section we shall prove Theorems 1 and 2 . We first present the following result for tree-transformation and their odd component numbers of co-trees.

Lemma 1. Let G be a connected graph with a spanning tree T. Let e be an edge in $G-E(T)$ and f is another edge in $C_{e}-e$, where C_{e} is the unique cycle in $T+e$. Then $T^{\prime}=T+e-f$ is another spanning tree in G such that $\omega\left(T^{\prime}\right) \equiv \omega(T)(\bmod 2)$ and $\left|\omega\left(T^{\prime}\right)-\omega(T)\right| \leq 2$.

Proof. Let σ_{e} be the component of $G-E(T)$ containing e. Let σ_{x} and σ_{y} be, respectively, the (possible) two components of $G-E(T)$ containing x and y, where $f=(x, y)$. Then there are several more cases should be handled as listed below.
(1) σ_{e}, σ_{x} and σ_{y} are pairwisely distinct components;
(2) $\sigma_{x}=\sigma_{y} \neq \sigma_{e}$;
(3) $\sigma_{x}=\sigma_{e} \neq \sigma_{y}$;
(4) $\sigma_{y}=\sigma_{e} \neq \sigma_{x}$;
(5) $\sigma_{y}=\sigma_{x}=\sigma_{e}$.

Now we consider the case that σ_{e}, σ_{x} and σ_{y} are pairwisely distinct components. We concentrate on the case (1). There are two subcases to be handled.

Subcase 1.1. $\sigma_{e}-e$ is disconnected.
Let $\sigma_{e}-e=\sigma_{e}^{\prime}-\sigma_{e}^{\prime \prime}$.

https://daneshyari.com/en/article/4625741

Download Persian Version:
https://daneshyari.com/article/4625741

Daneshyari.com

[^0]: * Corresponding author. Tel.: +86 18817557969.

 E-mail addresses: hren@math.ecnu.edu.cn (H. Ren), chaofugang@126.com (F. Chao).

