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a b s t r a c t 

We analyze the implicit Euler discretization for a class of convex linear-quadratic optimal 

control problems with control appearing linearly. Constraints are defined by lower and 

upper bounds for the controls, and the cost functional may depend on a regularization 

parameter ν . Without any structural assumption on the optimal control we prove conver- 

gence of order 1 w.r.t. the mesh size for the discrete optimal values. Under the additional 

assumption that the optimal control is of bang-bang type and the switching function sat- 

isfies a growth condition around their zeros we show that the solutions are calm functions 

of perturbation and regularization parameters. By applying this result to the implicit Euler 

discretization we improve existing error estimates for discretizations based on the explicit 

Euler method. Numerical experiments confirm the theoretical findings and demonstrate 

the usefulness of implicit methods and regularization in case of bang-bang controls. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Perturbation and discretization of optimal control problems are well studied for the case that the optimal control is 

sufficiently smooth (see e.g. Dontchev and Hager [1] , Dontchev et al. [2] , Dontchev and Rockafellar [3] , Malanowski [4,5] , 

Malanowski et al. [6] , Alt [7] for control problems governed by ordinary differential equations and Tröltzsch [8,9] and the pa- 

pers cited therein for control problems governed by partial differential equations). The results are usually based on second- 

order optimality conditions. Due to the lack of such conditions for bang-bang controls, there have been only a few papers 

on discretization of such controls (see Alt and Mackenroth [10] , Dhamo and Tröltzsch [11] and the papers cited therein). 

New second-order optimality conditions for bang-bang controls have been developed recently in Felgenhauer [12–14] , Mau- 

rer et al. [15] , and Osmolovskii and Maurer [16–18] (see also the papers cited therein), and variants of these conditions 

have then been used in Veliov [19] , Alt et al. [20] , Alt and Seydenschwanz [21] , and in Seydenschwanz [22] to obtain error 

estimates for discretization of optimal control problems governed by ordinary differential equations and in Deckelnick and 

Hinze [23] for elliptic control problems. 

Discretization combined with regularization is a good alternative to direct discretization, since the problem to be solved 

is replaced by problems having smoother solutions. The regularization by an L 2 -term in the cost functional of optimal 
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control problems has been intensively studied during the last years (see e.g. Wachsmuth [24] and the papers cited therein). 

The dependency of solutions on regularization parameters and the combination with discretization has been investigated 

in Hager [25] for multiplier methods, in Alt and Seydenschwanz [26] , Seydenschwanz [22] for Euler discretization of con- 

trol problems governed by ordinary differential equations, and in Lorenz and Rösch [27] for elliptic control problems with 

state constraints. Results for control problems with a sparsity functional can be found e.g. in Alt and Schneider [28] for 

control problems governed by ordinary differential equations, and in Wachsmuth and Wachsmuth [29] for control problems 

governed by partial differential equations. A duality approach has been investigated in Alt et al. [30] . 

It is well-known that the integration of stiff ODEs by explicit Euler discretization gives rise to peculiar difficulties. Thus, 

explicit Euler may be not suitable as discretization scheme for optimal control problems governed by stiff ODEs (com- 

pare Alt and Seydenschwanz [21, Example 7.1] , Seydenschwanz [31, Beispiel 3.2.17, Beispiel 4.2.14] ). Among others, such 

problems arise in chemical reaction kinetics. For a further detailed discussion on this topic, we refer the reader to Stoer 

and Bulirsch [32, Section 7.2.16] . Surprisingly, only a few papers deriving error estimates for discretized control problems 

are concerned with implicit discretizations. Hager [33] and Dontchev et al. [34] investigate general Runge–Kutta methods 

assuming that the optimal control is Lipschitz continuous. For problems with bang-bang optimal controls Alt and Seyden- 

schwanz [21] and Seydenschwanz [31] seem to be the only papers up to now dealing with an implicit discretization method 

based on the implicit midpoint rule. We will therefore study in the following a discretization scheme based on implicit Euler 

method, which is often used for practical computations. 

The technique used here to derive error estimates for the discretized optimal controls allows to improve the error esti- 

mates of Seydenschwanz [22] for discretizations based on the explicit Euler method, and numerical examples demonstrate 

that the error estimates obtained here are sharp. As auxiliary results we derive estimates for optimal values and solutions 

of perturbed control problems. 

We use the following notations: R 

n is the n -dimensional Euclidean space with the inner product denoted by 〈 x , y 〉 and 

the norm | x | = 〈 x, x 〉 1 / 2 . For an m × n -matrix M we denote the spectral norm by ‖ M‖ = sup | z|≤1 | Mz| . Let t 0 , t f ∈ R , t 0 < t f . 

We denote by L 2 (t 0 , t f ; R 

m ) the Hilbert space of square integrable, measurable vector functions u : [ t 0 , t f ] → R 

m with 

‖ u ‖ 2 = 

(∫ t f 

t 0 

| u (t ) | 2 d t 

) 1 
2 

< ∞ , 

by L 1 (t 0 , t f ; R 

m ) the Banach space of integrable, measurable vector functions u : [ t 0 , t f ] → R 

m with 

‖ u ‖ 1 = 

∫ t f 

t 0 

m ∑ 

i =1 

| u i (t) | d t = 

m ∑ 

i =1 

‖ u i ‖ 1 < ∞ , 

and L ∞ (t 0 , t f ; R 

m ) is the Banach space of essentially bounded vector functions with the norm 

‖ u ‖ ∞ 

= max 
1 ≤i ≤m 

ess sup t∈ [ t 0 ,t f ] | u i (t) | . 

For p ∈ {1, 2, ∞ } we denote by W 

1 
p (t 0 , t f ; R 

n ) the spaces of absolutely continuous functions on [ t 0 , t f ] with derivative in 

L p (t 0 , t f ; R 

n ) , i.e. 

W 

1 
p (t 0 , t f ; R 

n ) = { x ∈ L p (t 0 , t f ; R 

n ) | ˙ x ∈ L p (t 0 , t f ; R 

n ) } 
with 

‖ x ‖ 1 ,p = 

(| x (t 0 ) | p + ‖ ̇

 x ‖ 

p 
p 

) 1 
p 

for p = 1 , 2 and 

‖ x ‖ 1 , ∞ 

= max { ‖ x ‖ ∞ 

, ‖ ̇

 x ‖ ∞ 

} . 
Let X = X 1 × X 2 , where X 1 = W 

1 ∞ 

(t 0 , t f ; R 

n ) , X 2 = L ∞ (t 0 , t f ; R 

m ) , and 

‖ (x, u ) ‖ = max { ‖ x ‖ 1 , ∞ 

, ‖ u ‖ ∞ 

} . 
We consider a class of convex linear-quadratic optimal control problems with control appearing linearly, where the con- 

straints are described by lower and upper bounds for the controls. We want to solve the control problem numerically based 

on implicit Euler discretization combined with regularization, and we are interested in the dependence of the solutions of 

the discretized problems on the mesh size and the regularization parameter. As we shall see in Section 6 the discretized 

control problems may be interpreted as perturbations of the original problem. Therefore, we consider the following class of 

control problems depending on a perturbation parameter p = (ξ , ξ0 , ξ f , ζ , η) ∈ X 3 , where 

X 3 = L 1 (t 0 , t f ; R 

n ) × R 

n × R 

n × L ∞ (t 0 , t f ; R 

m ) × L ∞ (t 0 , t f ; R 

n ) 

and a regularization parameter ν ∈ X 4 = { ν ∈ R | ν ≥ 0 } : 
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