Some subclasses of close-to-convex mappings associated with conic regions

H.M. Srivastava ${ }^{\text {a,b,*, }, ~ M u h a m m a d ~ R a f i u l l a h ~ K h a n ~}{ }^{\text {c }}$, Muhammad Arif ${ }^{\text {c }}$
a Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada
${ }^{\mathrm{b}}$ Center for General Education (Department of Science and Technology), China Medical University, Taichung 40402, Taiwan, Republic of China
${ }^{\text {c }}$ Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan

A R T I C L E I N F O

MSC:

Primary 30C45
Secondary 30C50,

Keywords:

Analytic and univalent functions
Principle of subordination
Conic domain
Uniformly close-to-convex functions
Coefficient estimates and arc-length
problem
Radius of convexity

Abstract

In this paper, we introduce and investigate several new subclasses of close-to-convex functions and their related mappings. Various interesting properties including sufficiency criteria, coefficient estimates, arc-length problem and radius of convexity are investigated.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and definitions

Let \mathcal{A} be the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\} .
$$

We denote by \mathcal{S} the class of all functions in \mathcal{A} which are univalent in \mathbb{U}. Suppose also that, for $0 \leqq \beta<1, \mathcal{S}^{*}(\beta), \mathcal{C}(\beta)$ and $\mathcal{K}(\beta)$ denote, respectively, the classes of functions in \mathcal{A} which are starlike, convex and close-to-convex of order β in \mathbb{U} (see, for details, [2]).

If f and g are analytic in \mathbb{U}, we say that f is subordinate to g, written as

$$
f \prec g \quad \text { or } \quad f(z) \prec g(z),
$$

if there exists a Schwarz function w, which is analytic in \mathbb{U} with

$$
w(0)=0 \quad \text { and } \quad|w(z)|<1
$$

[^0]such that
$$
f(z)=g(w(z)) \quad(z \in \mathbb{U})
$$

Furthermore, if the function $g(z)$ is univalent in \mathbb{U}, then the following equivalence holds true (see $[2,8]$):

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) \Longleftrightarrow f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U})
$$

Let

$$
\begin{equation*}
\Omega_{k}=\left\{u+\mathrm{i} v: u>k \sqrt{(u-1)^{2}+v^{2}} \quad(u, v \in \mathbb{R})\right\} \tag{1.2}
\end{equation*}
$$

Then, for a fixed value of k, the domain Ω_{k} represents the conic region bounded by an ellipse for $k>1$, the right half-plane when $k=0$, the right branch of a hyperbola whenever $0 \leqq k<1$ and the region Ω_{k} is parabolic for the value $k=1$. The domain Ω_{k} was studied by Kanas et al. (see, for details, [3-6]). Here, in our present investigation, we define the domain $\Omega_{k, \gamma}$, related to the domain Ω_{k} given by (1.2), as follows (see [10]):

$$
\Omega_{k, \gamma}=\gamma \Omega_{k}+(1-\gamma) \quad(0<\Re(\gamma) \leqq k+1)
$$

Extremal functions for these conic regions, denoted by $p_{k, \gamma}(z)$, are analytic in \mathbb{U} and map the open unit disk \mathbb{U} onto the domain $\Omega_{k, \gamma}$ such that

$$
p_{k, \gamma}(0)=1 \quad \text { and } \quad p_{k, \gamma}^{\prime}(0)>1
$$

where $p_{k, \gamma}(z)$ is given by

$$
p_{k, \gamma}(z)= \begin{cases}\frac{1+(2 \gamma-1) z}{1-z} & (k=0) \tag{1.3}\\ 1+\frac{2 \gamma}{\pi^{2}}\left[\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right]^{2} & (k=1) \\ 1+\frac{2 \gamma}{1-k^{2}} \sinh ^{2}\left[\left(\frac{2}{\pi} \arccos k\right) \operatorname{arctanh}(\sqrt{z})\right] & (0<k<1) \\ 1+\frac{\gamma}{k^{2}-1} \sin \left(\frac{\pi}{2 R(t)} \int_{0}^{\frac{u(z)}{\sqrt{\tau}}} \frac{1}{\sqrt{1-x^{2}} \sqrt{1-(t x)^{2}}} d x\right)+\frac{1}{k^{2}-1} & (k>1),\end{cases}
$$

where

$$
u(z)=\frac{z-\sqrt{t}}{1-\sqrt{t z}} \quad(0<t<1 ; z \in \mathbb{U})
$$

such that

$$
k=\cosh \left(\frac{\pi R^{\prime}(t)}{4 R(t)}\right)
$$

Here $R(t)$ is Legendre's complete elliptic integral of the first kind and $R^{\prime}(t)$ is the complementary integral of $R(t)$ (see $[5,6,10]$).
For the function $p_{k, \gamma}(z)$ given by (1.3), let $\mathcal{P}\left(p_{k, \gamma}(z)\right)$ denote the class of functions $p(z)$ which are analytic in \mathbb{U} such that

$$
p(0)=1 \quad \text { and } \quad p(z) \prec p_{k, \gamma}(z) \quad(z \in \mathbb{U})
$$

We note that

$$
p_{k}(z):=p_{k, 1}(z) \quad \text { and } \quad \mathcal{P}\left(p_{k, 1}(z)\right)=: \mathcal{P}\left(p_{k}(z)\right)
$$

It can easily be seen that

$$
\mathcal{P}\left(p_{k}(z)\right) \subset \mathcal{P}\left(\beta_{1}\right),
$$

where

$$
\mathcal{P}\left(\beta_{1}\right):=\left\{q: q \in \mathcal{A}, q(0)=1 \quad \text { and } \quad \mathfrak{R}[q(z)]>\beta_{1} \quad\left(z \in \mathbb{U} ; 0 \leqq \beta_{1}<1\right)\right\}
$$

with

$$
\begin{equation*}
\beta_{1}=\frac{k}{1+k} \tag{1.4}
\end{equation*}
$$

For $p \in \mathcal{P}\left(p_{k}(z)\right)$, we have

$$
|\arg [p(z)]| \leqq \frac{\sigma \pi}{2} \quad(0<\sigma \leqq 1 ; z \in \mathbb{U})
$$

https://daneshyari.com/en/article/4625782

Download Persian Version:
https://daneshyari.com/article/4625782

Daneshyari.com

[^0]: * Corresponding author at: Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada. Tel.: +1 2504725313.

 E-mail addresses: harimsri@math.uvic.ca (H.M. Srivastava), rafilec@gmail.com (M. Rafiullah Khan), marifmaths@yahoo.com (M. Arif).

