
Implementation-aware selection of the custom instruction set
for extensible processors

Amir Yazdanbakhsh a,1, Mehdi Kamal a, Sied Mehdi Fakhraie a, Ali Afzali-Kusha a,⇑, Saeed Safari a,
Massoud Pedram b

a School of Electrical and Computer Engineering, University of Tehran, Iran
b EE Department, University of Southern California, USA

a r t i c l e i n f o

Article history:
Available online 6 June 2014

Keywords:
Extensible processor
Design space exploration
Hardware/software codesign
Application specific instruction set
processors
Microarchitecture

a b s t r a c t

This paper presents an approach for incorporating the effect of various logic synthesis options and logic
level implementations into the custom instruction (CI) selection for extensible processors. This effect
translates into the availability of a piecewise continuous spectrum of delay versus area choices for each
CI, which in turn influences the selection of the CI set that maximizes the speedup per area cost (SPA)
metric. The effectiveness of the proposed approach is evaluated by applying it to several benchmarks
and comparing the results with those of a conventional technique. We also apply the methodology to
the existing serialization algorithms aimed at relaxing register file constraints in multi-cycle custom
instruction design. The comparison shows considerable improvements in the speedup per area compared
to the custom instruction selection algorithms under the same area-budget constraint.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Increased rate of embedded applications calls for high perfor-
mance, low power consumption, flexibility, and cost efficiency of
systems that realize such applications. Extensible processors have
emerged in the field of embedded computing as a promising
approach to remedy many shortcomings of ASICs and general-
purpose processors [1]. This approach exploits a simple general-
purpose processor and extends its instruction set architecture with
beneficial custom instructions (CIs) to provide flexibility and high
performance [2]. In designing these processors, the runtime behav-
ior of applications in the target domain are analyzed to determine
the critical code segments of the applications. Based on this infor-
mation, the base processor is augmented with a number of special
instructions (custom instructions) for the computationally inten-
sive parts of the code.

Various algorithms have been developed to identify and select
the CIs in order to minimize the execution time of the underlying
applications in the target domain [2–7]. In the CI identification
phase, a pool of feasible CIs is determined subject to meeting

pre-defined constraints (i.e., I/O constraint) whereas in the CI
selection phase, a subset of identified CIs is chosen based on the
specified objective function(s) and subject to constraint(s) on the
layout area.

During the high-level synthesis process, different implementa-
tions of each primitive operation are explored in order to generate
a area-delay Pareto optimal curve for that operation [8]. Previous
works on CI selection for extensible processors has considered only
a single point in the design space and ignored the role of subse-
quent logic synthesis and optimizations on the physical implemen-
tation of the design when identifying the most effective CIs.

In this paper, we propose a framework to improve the design of
extended processors by considering different implementations of a
primitive for a selected custom instruction. This is achieved by
considering the Pareto optimal curve (delay versus area) of the
CIs. Using this method, we are able to determine the best imple-
mentation where the area usage of the CI is minimum while the
propagation delay of the CI does not violate the propagation delay
constraint. This exploration which enables us to employ more CIs
in a predefined area budget and also, more speed gain, is per-
formed before the CI selection phase of the design flow. The results
show that applying the technique gives rise to a considerable
improvement in the speed enhancement of the extended proces-
sors compared to the case of the conventional design approach in
which fixed delay and area is considered for each primitive opera-
tion. To the best of our knowledge, this investigation has not

http://dx.doi.org/10.1016/j.micpro.2014.05.007
0141-9331/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +98 2182084920; fax: +98 2188778690.
E-mail addresses: a.yazdanbakhsh@gatech.edu (A. Yazdanbakhsh), mehdikamal@

ut.ac.ir (M. Kamal), fakhraie@ut.ac.ir (S.M. Fakhraie), afzali@ut.ac.ir (A. Afzali-Kusha),
saeed@ut.ac.ir (S. Safari), pedram@usc.edu (M. Pedram).

1 Present address: College of Computing, Georgia Institute of Technology, USA.

Microprocessors and Microsystems 38 (2014) 681–691

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2014.05.007&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2014.05.007
mailto:a.yazdanbakhsh@gatech.edu
mailto:mehdikamal@ut.ac.ir
mailto:mehdikamal@ut.ac.ir
mailto:fakhraie@ut.ac.ir
mailto:afzali@ut.ac.ir
mailto:saeed@ut.ac.ir
mailto:pedram@usc.edu
http://dx.doi.org/10.1016/j.micpro.2014.05.007
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


reported for ASIPs in the literature. Additionally, to have a reason-
ably low runtime, we had to use an efficiently fast heuristic
technique, which is called WALK, to find (near) optimal implemen-
tation of each CI. This problem can be reduced to Knapsack
problem, which is an NP-hard algorithm.

The remainder of this paper is organized as follows. In Section 2,
related works are briefly reviewed while motivation of the work
along with the problem definition and formulation are presented
in Section 3. Section 4 describes the proposed approach and algo-
rithm. Experimental setup and results are discussed in Section 5.
Finally, Section 6 concludes the paper.

2. Related works

There are several works in the literature focusing on CI identifi-
cation and selection algorithm (see, e.g., [2,10–18]). In [2], an enu-
meration algorithm aimed at generating all valid CIs considering
just convexity and I/O constraints was presented. The concept of
binary decision tree was utilized to search among all valid sub-
graphs. Each internal node represented a potential sub-graph,
which was analyzed based on the specified constraints to identify
the validity of the enumerated CIs. The inclusion or exclusion of a
node in a sub-graph was distinguished by the movement toward
the right or the left branch, respectively. An approach similar to
[2] and an exact algorithm to enumerate the entire feasible CIs in
a reasonable time were provided in [10].

Different approaches to reduce the computation time in the CI
identification phase have been proposed in [11–15]. While the
architectural space is comprehensively explored in these works,
the selection of the CIs is accomplished based on a constant area-
delay table derived from the synthesis tool regardless of logic-level
implementation of the primitive cells. Different algorithms for
high-level CI identification for extensible processors have been
proposed in [16–18]. In [19], the arithmetic operations of selected
custom instructions are optimized. In this work, to improve the
speedup, the normal hardware blocks were replaced by the
delay-optimized ones.

In [20], a design flow for reconfigurable ASIPs (rASIPs) has been
proposed. In the proposed design flow, where the processor was
described by using LISA language, the custom instructions were
extracted for mapping them to a coarse grained reconfigurable
architecture. In this work, the CI extraction method of [21], which
did not consider the area usage of the CIs during the selection
phase, was used. A framework for performance and area trade-off
evaluation in the CI extraction has been proposed in [23]. The
information about how the area usage of each identified CI has
been extracted was not presented in detail. Clearly, no area usage
optimization of the identified CIs before the selection phase has
been utilized. In [24], a reconfigurable transparent accelerator
based on the look-up table was proposed. Designing this accelera-
tor, called Programmable Carry Function Unit (PCFU), was the main
focus of the paper. In [25], similar to [24], a transparent accelerator,
named Configurable Compute Accelerator (CCA), has been
proposed.

An ILP-based CI identification framework, which extracts CIs
from the critical code segment, has been proposed in [27]. The
extraction was performed using the available data bandwidth
and transfer latencies between custom logic and a baseline proces-
sor. In [28], a method to expedite CI generation from the high-level
application descriptions was discussed. An approach for increasing
the number of I/O ports of the CFU to access the General Purpose
Registers (GPRs) has been suggested in [29]. It was based on the
existing idea of register clustering in VLIW processors without a
significant increase in the size of the GPR files. In [30], an auto-
mated ISE synthesis, which consider both the user-specified and

processor-specific constraints have been proposed. The authors
did not provide the details of the CI area usage estimation and
the way that the usage is considered in the selection phase. In
[6], a framework for estimating the area utilization and latencies
of custom instructions on lookup-table based commercial FPGAs
was proposed. In [21], multiple implementations per each special
(custom) instruction were added to the extensible processor. A
run-time system was proposed to dynamically select the appropri-
ate variation of the special instruction based on the available hard-
ware resources. This work introduced a novel run-time adaptive
extensible processor to increase the hardware usage efficiency.

While the aforementioned works have introduced novel algo-
rithms and architectures to increase the flexibility and reconfigura-
bility of custom instruction selection and implementation, they
have not considered different synthesis constraints (in terms of
area and delay) for each custom instruction during the CI selection
phase in the ASIP design flow. We should mention that the idea of
using different area-delay implementation of primitives has been
used in other fields of digital circuit design such as high level syn-
thesis [8] and reconfigurable architecture design [20]. In these
fields, the objective functions and as well the granularity of the
exploration are different than those used in the ASIP design flow
considered in this work.

3. Motivation and problem formulation

In this section, first, we describe the motivation of the work by
an example. Next, key concepts in the field of custom instruction
are formally presented. Also, the problem of finding a subset of
CIs that maximizes the total speedup per area while satisfying an
area budget constraint is formulated.

3.1. Motivation

The CI selection algorithms select a subset of instructions from
the generated CIs in the CI identification phase such that the
speedup per area (SPA) metric is maximized while an area budget
constraint is not violated [2,6]. Previous works consider a constant
value for the delay and area of the primitive operations. Whereas,
we consider different logic implementations (different delays and
areas) of the primitive operations in the algorithm to maximize
the SPA parameter. Note that the SPA merit function is utilized in
the CI selection phase which is after the CI identification phase.
The proposed technique is applied in the stage between identifica-
tion and selection phases and its efficiency is independent from the
merit function used in the selection phase. Hence, in this work,
without loss of generality, we use the SPA metric for the CI selec-
tion under a predefined area budget.

Fig. 1 shows two custom instructions generated from a data
flow graph example under micro-architectural constraints. The CI
selection algorithm should make a decision between these two
CIs and select the one which is optimum in terms of the SPA metric.
In the case of the first CI, we assume that the area and delay are
fixed, and hence, SPA is fixed too. In the case of the second CI,
the (32-bit) adder primitive is synthesized under different delay
constraints assuming fixed areas and delays for the other primi-
tives. Different delay constraints are synthesized with different
area values due to different logic implementations. The area versus
delay characteristic for this primitive is depicted in Fig. 2. The char-
acteristic is an area-delay Pareto optimal curve. As shown in this
figure, the area of the synthesized 32-bit adder decreases as the
delay constraint increases. The discontinuity in the characteristic
originates from the use of two micro-architecture implementations
of the adder (carry look-ahead adder on the left and ripple-carry
adder on the right.)

682 A. Yazdanbakhsh et al. / Microprocessors and Microsystems 38 (2014) 681–691



Download English Version:

https://daneshyari.com/en/article/462579

Download Persian Version:

https://daneshyari.com/article/462579

Daneshyari.com

https://daneshyari.com/en/article/462579
https://daneshyari.com/article/462579
https://daneshyari.com

