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a b s t r a c t

We present a weak finite element method for elliptic problems in one space dimension.

Our analysis shows that this method has more advantages than the known weak Galerkin

method proposed for multi-dimensional problems, for example, it has higher accuracy and

the derived discrete equations can be solved locally, element by element. We derive the

optimal error estimates in the discrete H1-norm, the L2-norm and L∞-norm, respectively.

Moreover, some superconvergence results are also given. Finally, numerical examples are

provided to illustrate our theoretical analysis.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Recently, the weak Galerkin finite element method attracts much attention in the field of numerical partial differential

equations [1–6]. This method is presented originally by Wang and Ye for solving elliptic problem in multi-dimensional

domain [1]. Since then, some modified weak Galerkin methods have also been studied, for example, see [7–10]. The weak

Galerkin method can be considered as an extension of the standard finite element method where classical derivatives are

replaced in the variational equation by the weak derivatives defined on weak finite element functions. The main feature of

this method is that it allows the use of totally discontinuous finite element function and the value of finite element function

on element boundary may be independent with its value in the interior of element. This feature makes this method possess

the advantage of the usual discontinuous Galerkin (DG) finite element method [11–13] and it has higher flexibility than the

DG method. The readers are referred to articles [2,3,12] for more detailed explanation of this method and its relation with

other finite element methods.

In this paper, we present a weak finite element method for general second order elliptic problem in one space dimen-

sion: {
−(a2(x)u′)′ + a1(x)u′ + a0(x)u = f (x), x ∈ (a, b),
u(a) = 0, u′(b) = 0,

(1.1)

where a2(x) ≥ amin > 0, a0(x) ≥ 0.

We first define the weak derivative and discrete weak derivative on discontinuous function in one dimensional domain.

Then, we construct the weak finite element space Sh and use it to give the weak finite element approximation to problem

(1.1). Although, in some aspects, our method uses the idea of the original weak Galerkin finite element method proposed
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for multi-dimensional problem [1], it still has itself features. For example, our weak finite element space Sh admits a weak

embedding inequality (see Lemma 3.2), which can be used to derive the L∞-error estimate on mesh point set; Next, the

discrete finite element system of equations can be solved locally, element by element. These features are not available for

the weak Galerkin method in multi-dimensional space. Except the usual optimal error estimates in various norms, we also

give some surperconvergence results for the weak finite element solution. Numerical results show that our method pos-

sesses very high computation accuracy. For finite element polynomial of order k, our computations show that the numerical

convergence rates are at least of order k + 2 in the discrete H1-norm, the L2-norm and the L∞-norm at mesh points. Our

method also can be applied to solve other partial differential equations in one space dimension.

This paper is organized as follows. In Section 2, we introduce the weak finite element method for the elliptic problem.

In Section 3, the stability of the weak finite element method is analyzed. Section 4 is devoted to the optimal error estimate

and superconvergence estimate in various norms. In Section 5, the local solvability of the weak finite element system of

equations is discussed and numerical experiments are provided to illustrate our theoretical analysis.

Throughout this paper, we adopt the notations Hm(I) to indicate the usual Sobolev spaces on interval I equipped with

the norm ‖ · ‖m = ‖ · ‖Hm(I). The notations (·, ·) and ‖·‖ denote the inner product and norm, respectively, in the space L2(I).

We will use letter C to represent a generic positive constant, independent of the mesh size h.

2. Problem and its weak finite element approximation

Consider elliptic problem (1.1). Multiplying Eq. (1.1) by the transformation function

ρ(x) = exp

(
−

∫ x

0

a1(x)

a2(x)
dx

)
,

we see that problem (1.1) can be transformed into the following form:

−(ρ a2u′)′ + ρ a0u = ρ f (x), x ∈ (a, b), u(a) = 0, u′(b) = 0.

Therefore, in what follows, we only consider elliptic problems in the form:{
−(a2(x)u′)′ + a0(x)u = f (x), x ∈ (a, b),
u(a) = 0, u′(b) = 0,

(2.1)

where a2(x) ≥ amin > 0, a0(x) ≥ 0 and u′ = du
dx

. We assume that a2(x) ∈ H1(a, b), a0(x) ∈ L∞(a, b).

First, let us introduce the weak derivative concept. Let closed interval Īa = [xa, xb] and its interior Ia = (xa, xb). A weak

function on Īa refers to a function v = {v0, va, vb}, v0 = v|Ia ∈ L2(Ia), values va = v(xa) and vb = v(xb) exist. Note that va and

vb may not be necessarily the trace of v0 at the interval endpoints xa and xb. Denote the weak function space by

W (Ia) = {v = {v0, va, vb} : v0 ∈ L2(Ia), |va| + |vb| < ∞}.
Definition 2.1. Let v ∈ W (Ia). The weak derivative dwv of v is defined as a linear functional in the dual space H−1(Ia) whose

action on each q ∈ H1(Ia) is given by

< dwv, q >
.= −

∫
Ia

v0q′dx + vbqb − vaqa, ∀ q ∈ H1(Ia), (2.2)

where qa = q(xa), qb = q(xb).

Obviously, as a bounded linear functional on H1(Ia), dwv is well defined for any v ∈ W (Ia). Moreover, for v ∈ H1(Ia), if we

consider v as a weak function with components v0 = v|Ia , va = v(xa) and vb = v(xb), then by integration by parts, we have

for q ∈ H1(Ia) that∫
Ia

v′qdx = −
∫

Ia

vq′dx + vbqb − vaqa = −
∫

Ia

v0q′dx + vbqb − vaqa, (2.3)

which implies that dwv = v′ is the usual derivative of function v if v ∈ H1(Ia).

Next, we introduce the discrete weak derivative which is actually used in our analysis. For nonnegative integer r ≥ 0, let

Pr(Ia) be the space composed of all polynomials on Ia with degree no more than r. Then, Pr(Ia) is a subspace space of H1(Ia).

Definition 2.2. For v ∈ W (Ia), the discrete weak derivative dw,rv ∈ Pr(Ia) is defined as the unique solution of the following

equation∫
Ia

dw,rvqdx = −
∫

Ia

v0q′dx + vbqb − vaqa, ∀ q ∈ Pr(Ia). (2.4)

Let v ∈ H1(Ia). From (2.3) and (2.4), we have∫
Ia

(dw,rv − v′)qdx = 0, ∀ q ∈ Pr(Ia).

This implies that dw,rv is the L2 projection of v′ in Pr(Ia) if v ∈ H1(Ia).
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