Microprocessors and Microsystems 38 (2014) 717-729

Contents lists available at ScienceDirect

EMBEDDED
HARDWARE
DESIGN

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Improved GPU SIMD control flow efficiency via hybrid warp size
mechanism

@ CrossMark

Xingxing Jin, Brian Daku, Seok-Bum Ko *

Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, S7N 5A9 SK, Canada

ARTICLE INFO ABSTRACT

Article history:
Available online 28 June 2014

High single instruction multiple data (SIMD) efficiency and low power consumption have made graphic
processing units (GPUs) an ideal platform for many complex computational applications. Thousands of
threads can be created by programmers and grouped into fixed-size SIMD batches, known as warps. High
Keywords: throughput is then achieved by concurrently executing such warps with minimal control overhead.
SIMD However, if a branch instruction occurs, which assigns different paths to different threads, one warp will
GPU be broken into multiple warps that have to be executed serially, consequently reducing the efficiency
‘QS;IZ h divergence advantage of SIMD. In this paper, the contemporary fixed-size warp design is abandoned for a hybrid

warp size (HWS) mechanism. Mixed-size warps are generated according to HWS and are scheduled
and issued flexibly. The simulation results show that this mechanism yields an average speedup of
1.20 over the baseline architecture for a wide variety of general purpose GPU applications. The paper also
integrates HWS with dynamic warp formation (DWF), which is a well-known branch handling
mechanism used to improve SIMD utilization by forming new warps out of split warps in real time.
The simulation results show that the combination of DWF and HWS generates an average speedup of

1.27 over the DWF-only platform with an estimated area increase of about 1% of DWF.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Thread level parallelism (TLP) when compared with instruction
level parallelism (ILP) is becoming the dominant technique to sat-
isfy increasing computation demand, as single thread performance
improvement are getting slow. Intel’s Larrabee [1], IBM’s Power7
[2], NVIDIA’s Tesla GPU [3] and AMD’s Fusion APU [4] all employ
TLP in various ways. These devices typically implement TLP within
graphic processing units (GPUs). GPUs have become the dominant
parallel architecture in these devices because of GPUs’ significant
computational power, large bandwidth and high energy efficiency.

GPUs are characterized by numerous simple yet energy-
efficient computational cores, thousands of simultaneously active
fine-grained threads and large off-chip memory bandwidth [5].
These threads are grouped into fixed-size single instruction multi-
ple data (SIMD) batches, known as warps. Generally warp size is
equal to or a multiple of SIMD width. Correlated threads within a
warp execute the same instruction in sequence on different regis-
ters in parallel. This organization amortizes the overhead of

* Corresponding author. Tel.: +1 306 966 5456.
E-mail addresses: xing.jin@usask.ca (X. Jin), brian.daku@usask.ca (B. Daku),
seokbum.ko@usask.ca (S.-B. Ko).

http://dx.doi.org/10.1016/j.micpro.2014.06.007
0141-9331/© 2014 Elsevier B.V. All rights reserved.

instruction fetch and decode, and therefore, more processing units
can be integrated onto a single chip. Contemporary GPUs employ
the fine-grained multithreading organization, to hide stalls that
arise from long-latency operations. When any thread within a
warp experiences a long-latency operation or a data hazard, the
entire warp is stalled. However, other warps that are ready to be
executed will be issued to pipelines. Multiple warps will occupy
pipelines concurrently and throughput loss will be reduced. For
example, for NVIDIA’s GPUs, the latency of read-after-write depen-
dencies is approximately 24 cycles. If there are more than 192
active threads (8 GPU cores per multiprocessor x 24 cycles of
latency = 192 active threads, or 6 interweaved active warps of size
32), the latency can be completely hid through this multithreading
technique [6].

GPUs have tremendously accelerated many applications. For
example, up to February 2012, NVIDIA had listed 1287 GPU appli-
cations with 214 of these applications obtaining a speedup of 50 or
more and 135 of the 214 obtaining a speedup of 100 or more [7].
However, there are many applications that can achieve only lim-
ited performance improvement or no improvement at all. One
major barrier to performance improvement is branch divergence.

The SIMD organization saves control overhead and increases
computation density. However, when a branch instruction is

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2014.06.007&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2014.06.007
mailto:xing.jin@usask.ca
mailto:brian.daku@usask.ca
mailto:seokbum.ko@usask.ca
http://dx.doi.org/10.1016/j.micpro.2014.06.007
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro

718

W25~32
W18
== Control flow percentage
100% T—
90%
80%

70%

W17~24
WO

60%
50%
40%
30%
20%
10%

Warp distribution

0%

BFS BS NN

MUM RAY

X. Jin et al./ Microprocessors and Microsystems 38 (2014) 717-729

—\W9~16
I Stall

!
o
w

o
N
&

o
N

0.1

o
G
Control flow percentage

0.05

STO LPS NQU AES LIB

Fig. 1. Warp occupancy and control flow weight.

executed within a warp resulting in different paths for different
threads, this warp will be broken into multiple warps which have
to be executed serially. Meanwhile, warp occupancy' will be
decreased and throughput will be reduced significantly. Fig. 1 shows
warp occupancies for a set of general purpose applications. The
weight of the branch instructions is also shown. The warp size here
is set to 32. Each stacked bar represents an application. Within each
bar, every block indicates the percentage of cycles corresponding to a
certain number of active threads. The figure shows that benchmarks
BFS, NN, MUM, LPS and NQU (see Table 3 on page 22) have relatively
higher numbers of under-filled warps. Meanwhile, they all have
comparatively more control flow instructions. This indicates that
control flow intensive applications will more likely suffer from
branch divergence leading to more idle computation resources.
This paper makes the following contributions:

1. It proposes a novel mechanism to overcome throughput loss
due to branch divergence. It abandons current fixed-size warp
design and introduces a hybrid warp size (HWS) mechanism.
Warp size is set dynamically by hardware with the aim of
achieving as high a throughput as possible.

2. It demonstrates the realistic hardware implementation of HWS
and its estimated area overhead.

3. It combines HWS and dynamic warp formation (DWF), a well-
known technique that deals with the GPU control flow issues.
Other than DWF, it introduces a new squeeze algorithm to make
individual warps denser before combining them with other
warps. Meanwhile, it modifies the pattern of warp formation
to better tolerate warp conflicts.?

4. It gives a theoretical method to estimate throughput loss due to
low warp occupancy and, furthermore, approximates the
potential room for performance improvement.

The remainder of this paper is organized as follows: Section 2
describes the baseline GPU architecture. Section 3 discusses the
mainstream branch handling methods. Section 4 describes the
proposed HWS mechanism and outlines the integration with
DWF. Section 5 shows the simulation method of this work.
Section 6 gives the simulation results. Section 7 discusses related
work and Section 8 provides a summary.

1 Warp occupancy is defined as the percentage of active threads within a warp [12].
2 Warp conflict: Each warp has multiple slots. If two warps both have at least one
active thread in the same slot, we call this a warp conflict.

2. Baseline GPU architecture

In this section, the baseline GPU architecture described is based
on NVIDIA devices of compute capability 1.x, where 1 is for devices
based on G80 architecture and x represents the minor revision
number. However, the method discussed in this paper can be
extended to other SIMD architectures.

Contemporary GPU cores are organized into a hierarchy. The
top level of GPU is composed of an array of processors referred
to as streaming multiprocessors (SMs) [8]. All SMs are connected
to multiple memory modules through an interconnect network,
as shown in the left part of Fig. 2 [11].

The right part of Fig. 2 gives the details of a single SM architec-
ture [9]. It is mainly composed of a shared instruction fetch unit, an
instruction decode unit, a highly banked register file and multiple
ALUs. Before execution, individual threads are grouped into fixed-
size warps [8], which are the granularity used for scheduling inside
a SM. In fetch stage, the scheduler selects a warp from the sched-
uling pool using a round-robin policy. Then the instruction cache
is accessed and the instruction decode is performed. Next, multiple
register values are read synchronously and then fed into ALUs,
where the computation is finished in parallel. Once a warp reaches
the final stage of the pipeline, it will be committed and put into the
scheduling pool again for future scheduling. However, if any
threads in a warp encounter a long latency operation (such as a
DRAM access), the warp will be taken out of the scheduling pool
until the warp is committed, meanwhile other warps will be
issued. As a result, long latency can be hidden and throughput loss
can be reduced.

3. Branch divergence handling

Branch divergence is a key issue for general purpose GPU appli-
cations. It occurs when threads within a warp take different paths.
For equal length paths, an if-else branch instruction loses 50% effi-
ciency. To facilitate user programming, contemporary GPUs allow
threads to branch and execute independently, and therefore,
threads with different paths within a warp can be directly serial-
ized, as shown in Fig. 3(a).

Fig. 3(d) gives the example program. Once the divergent point A
is reached, the two warps W0, W1 are split into four fragments
WO:A-B, WO:A-C, W1:A—B, W1:A—C. Next, the four
segments will continue executing until the end of the program,
even though they have an opportunity to converge (at merge
point D).

Download English Version:

https://daneshyari.com/en/article/462582

Download Persian Version:

https://daneshyari.com/article/462582

Daneshyari.com

https://daneshyari.com/en/article/462582
https://daneshyari.com/article/462582
https://daneshyari.com

