Ordering of oriented unicyclic graphs by skew energies

CrossMark

Wen-Huan Wang*
Department of Mathematics, Shanghai University, Shanghai 200444, China

A R T I C L E I N F O

MSC:

05C35
05C20

Keywords:

Oriented unicyclic graphs
Ordering
Minimal skew energy

Abstract

Ordering of the oriented unicyclic graphs with n vertices according to their minimal skew energies is investigated. We derive the first 22 oriented unicyclic graphs for $n \geq 1784$ and a series of oriented unicyclic graphs for $3 \leq n \leq 1783$.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The energy of a simple undirected graph was introduced by Gutman [1]. The study on the extremal values of energy for graphs is of importance for the chemical graph theory, and a lot of interesting results have been reported [2-7]. For more details on the mathematical concept and properties of the energy of a graph, one can refer to the books [8,9]. For undirected graphs, up to now, there are various generalizations of the graph energy, such as the matching energy [10-12], Laplacian energy [13], incidence energy [14], distance energy [15], and so on. There are some situations when chemists use digraphs rather than graphs. One such situation is, according to Ref. [16], when vertices represent distinct chemical species and arcs represent the direction in which a particular reaction happens between the two corresponding species. So the skew energy was put forward and people hope it will have similar applications as the energy in chemistry.

Let G be a simple undirected graph of order n, and G^{σ} be an oriented graph obtained from G by assigning an orientation σ to the edge set of G. The skew-adjacency matrix of G^{σ} is the $n \times n$ matrix $S\left(G^{\sigma}\right)=\left[s_{p q}\right]$, where $s_{p q}=1$ and $s_{q p}=-1$ if the $\operatorname{arc} p \rightarrow q$ is an arc of G^{σ}, otherwise $s_{p q}=s_{q p}=0$. The skew energy of an oriented graph G^{σ}, denoted by $E_{s}\left(G^{\sigma}\right)$, is defined as [17]

$$
\begin{equation*}
E_{S}\left(G^{\sigma}\right)=\sum_{i=1}^{n}\left|\lambda_{i}\right| \tag{1}
\end{equation*}
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of $S\left(G^{\sigma}\right)$, namely the n roots of $\phi\left(G^{\sigma}, x\right)=0$. Here $\phi\left(G^{\sigma}, x\right)=\operatorname{det}\left[x I-S\left(G^{\sigma}\right)\right]=$ $\sum_{i=0}^{n} a_{i}\left(G^{\sigma}\right) x^{n-i}$ is the skew characteristic polynomial of G^{σ}, where I is the unit matrix of order n, and $a_{0}, a_{1}, \ldots, a_{n}$ are the coefficients of $\phi\left(G^{\sigma}, x\right)$. Since G is a simple graph, G^{σ} does not have loops and multiple arcs. Hence, $S\left(G^{\sigma}\right)$ is a skewly symmetric real matrix. Therefore λ_{i} with $1 \leq i \leq n$ are all purely imaginary numbers, and $a_{2 i}\left(G^{\sigma}\right) \geq 0$ and $a_{2 i+1}\left(G^{\sigma}\right)=0$ for all $0 \leq i \leq\lfloor n / 2\rfloor[17]$. Thus we have

$$
\begin{equation*}
\phi\left(G^{\sigma}, x\right)=\sum_{i=0}^{\lfloor n / 2\rfloor} a_{2 i}\left(G^{\sigma}\right) x^{n-2 i} \tag{2}
\end{equation*}
$$

[^0]By using the coefficients of $\phi\left(G^{\sigma}, x\right)$, Hou et al. [18] expressed the skew energy $E_{S}\left(G^{\sigma}\right)$ by the following integral formula

$$
\begin{equation*}
E_{S}\left(G^{\sigma}\right)=\frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^{2}} \log \left[\sum_{i=0}^{\lfloor n / 2\rfloor} a_{2 i}\left(G^{\sigma}\right) x^{2 i}\right] \mathrm{d} x . \tag{3}
\end{equation*}
$$

One can see from (3) that $E_{s}\left(G^{\sigma}\right)$ is a strictly monotonously increasing function of $a_{2 i}\left(G^{\sigma}\right)$ for $0 \leq i \leq\lfloor n / 2\rfloor$. Note that $a_{0}\left(G^{\sigma}\right)=1$ and $a_{2}\left(G^{\sigma}\right)$ equals to the number of the edges in G. Next, we assume $2 \leq i \leq\lfloor n / 2\rfloor$ for $a_{2 i}\left(G^{\sigma}\right)$. This provides a useful way for comparing the skew energies of a pair of oriented graphs.

Let $G_{1}^{\sigma_{1}}$ and $G_{2}^{\sigma_{2}}$ be two oriented graphs of order n. Then

$$
\begin{equation*}
a_{2 i}\left(G_{1}^{\sigma_{1}}\right) \leq a_{2 i}\left(G_{2}^{\sigma_{2}}\right) \text { for all } 0 \leq i \leq\lfloor n / 2\rfloor \Rightarrow E_{S}\left(G_{1}^{\sigma_{1}}\right) \leq E_{s}\left(G_{2}^{\sigma_{2}}\right) . \tag{4}
\end{equation*}
$$

If $a_{2 i}\left(G_{1}^{\sigma_{1}}\right)=a_{2 i}\left(G_{2}^{\sigma_{2}}\right)$ for all $0 \leq i \leq\lfloor n / 2\rfloor$, then we have $E_{S}\left(G_{1}^{\sigma_{1}}\right)=E_{s}\left(G_{2}^{\sigma_{2}}\right)$. For the sake of conciseness, we introduce the symbols " \rightarrow ", " \rightleftharpoons " and " \rightrightarrows " as follows:

$$
\begin{align*}
& E_{S}\left(G_{1}^{\sigma_{1}}\right)<E_{s}\left(G_{2}^{\sigma_{2}}\right) \Longleftrightarrow G_{1}^{\sigma_{1}} \rightharpoonup G_{2}^{\sigma_{2}}, E_{S}\left(G_{1}^{\sigma_{1}}\right)=E_{s}\left(G_{2}^{\sigma_{2}}\right) \Longleftrightarrow G_{1}^{\sigma_{1}} \rightleftharpoons G_{2}^{\sigma_{2}}, \\
& E_{s}\left(G_{1}^{\sigma_{1}}\right) \leq E_{s}\left(G_{2}^{\sigma_{2}}\right) \Longleftrightarrow G_{1}^{\sigma_{1}} \rightrightarrows G_{2}^{\sigma_{2}} . \tag{5}
\end{align*}
$$

The relation (4) will be referred to as the method of coefficient comparison hereinafter, and has successfully been used in the study on the extremal values of skew energy for oriented graphs. For the oriented unicyclic graphs of order n, Hou et al. [18] obtained the oriented graphs with the 1st-minimal, the 2nd-minimal and the maximal skew energies, and Zhu [19] determined the oriented graphs with the first $\left\lfloor\frac{n-9}{2}\right\rfloor$ largest skew energies. For the oriented bicyclic graphs, Shen et al. [20] deduced the oriented graphs with the minimal and maximal skew energies, and Wang et al. [21] characterized the oriented graph with the second largest skew energy. For the oriented unicyclic graphs with perfect matchings, Zhu and Yang [22] obtained the oriented graph with the minimal skew energy. For the oriented unicyclic graphs with fixed diameter, Yang et al. [23] determined the oriented graph with the minimal skew energy. Some other results about the extremal skew energies can be found in Refs. [21,24-26]. For a survey on skew energy, one can refer to Ref. [27].

In this paper, we will further study the oriented unicyclic graphs to obtain the increasing order in terms of their minimal skew energies. The set of connected unicyclic graphs on n vertices is denoted by \mathcal{U}_{n}. By various methods, namely the method of coefficient comparison in (4), the integral formula in (10) (in Section 2), and some analytical techniques, we will derive, for $n \geq 1784$, the preceding 22 oriented unicyclic graphs within \mathcal{U}_{n} in the increasing order according to their minimal skew energies, and obtain, for $3 \leq n \leq 1783$, a lot of oriented unicyclic graphs within \mathcal{U}_{n} in the increasing order.

2. Previous results

To deduce the main results of the present paper, some necessary lemmas are simply quoted here and some definitions for certain types of graphs are introduced.

Let $m(G, k)$ be the number of k-matchings in G, where a k-matching is a disjoint union of k edges in G. It is consistent to define $m(G, 0)=1$ and $m(G, k)=0$ for $k<0$.

Lemma 1 [8]. Let $e=u v$ be an edge of G and k a positive integer. Then we have

$$
\begin{equation*}
m(G, k)=m(G-e, k)+m(G-u-v, k-1) . \tag{6}
\end{equation*}
$$

For two graphs G_{1} and G_{2}, we define a quasi-ordering relation as follows. If $m\left(G_{1}, k\right) \leq m\left(G_{2}, k\right)$ holds for all $k \geq 0$, then we write $G_{1} \preceq G_{2}$. If $G_{1} \preceq G_{2}$ and there exists some k_{0} such that $m\left(G_{1}, k_{0}\right)<m\left(G_{2}, k_{0}\right)$, then we write $G_{1} \prec G_{2}$.

Let P_{n} be a path with n vertices. The vertices of P_{n} are labeled consecutively by $v_{1}, v_{2}, \ldots, v_{n}$. Let X_{n} be the star $K_{1, n-1}$, Y_{n} the graph obtained from P_{4} by attaching $n-4$ pendent edges to v_{2}, Z_{n} the graph obtained from P_{4} by attaching $n-5$ and one pendent edge to v_{2} and v_{3}, respectively, and W_{n} the graph obtained from P_{5} by attaching $n-5$ pendent edges to v_{2}.

Lemma 2 [2]. Let T be a tree with n vertices, where $n \geq 6$. Then $X_{n} \prec Y_{n} \prec Z_{n} \prec W_{n} \prec T$, where $T \neq X_{n}, Y_{n}, Z_{n}, W_{n}$.
Let $B_{n, d}$ be the graph obtained from P_{d+1} by attaching $n-d-1$ pendent edges to v_{2} of P_{d+1}, where d is an integer with $n \geq d \geq 1$.

Lemma 3 [3]. Let d be a positive integer more than one and T a tree with n vertices having diameter at least d. Then $B_{n, d} \preceq T$ with the equality if and only if (iff) $T=B_{n, d}$.

Let B_{n} be the graph obtained from P_{6} by attaching $n-6$ pendent edges to v_{3} of P_{6}, and D_{n} the graph obtained from P_{6} by attaching $n-7$ and one pendent edge to v_{2} and v_{5} of P_{6}, respectively.

Lemma 4 [4]. Let T be a tree with n vertices having diameter 5 , where $n \geq 8$. Then $D_{n} \prec T$ for $n \geq 8$, where $T \neq B_{n, 5}, B_{n}, D_{n}$.
Lemma 5 [5]. For any real number $x>-1$, we have $\frac{x}{1+x} \leq \log (1+x) \leq x$.

https://daneshyari.com/en/article/4625825

Download Persian Version:

https://daneshyari.com/article/4625825

Daneshyari.com

[^0]: * Corresponding author. Tel.: +86 2166134206.

 E-mail address: whwang@shu.edu.cn, wangwenhuan@163.com

