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In this paper, we study the fully developed Couette flow of a drilling fluid, and explore the 

effects of concentration and shear-rate-dependent viscosity. The one-dimensional form of 

the governing equations, as well as the boundary conditions are made dimensionless and 

a parametric study is performed by varying the dimensionless numbers. 

Published by Elsevier Inc. 

1. Introduction 

Even though drilling is an old technology, the basic fundamentals of drilling science and technology are not yet well- 

understood. To meet the current energy demands the drilling may need to be done at a greater depth (usually referred to 

as extreme drilling) and also in areas where climate condition is not so amenable. Among the many types of drilling, one 

can mention offshore and deep-ocean drilling, extended reach wells, horizontal wells, multi-branch wells, etc. [1] . Many 

researchers have been engaged in finding ways to improve the efficiency of these drilling operations. The classical drilling 

method is the rotary drilling technique [2] , where a drill bit attached to the drill string rotates at a constant speed cutting 

the rock-type materials. These cuttings are then lifted off to the surface by a fluid which is circulated downward through the 

drill pipe and upward through the annular space between the rock and the pipe [3] . The fluid used in the drilling operation 

is often called the drilling fluid or the drilling mud. Much of the success of any drilling operation depends, to a large extent, 

on the performance of the drilling fluid. Hole stability, rate of penetration, loss of circulation, etc., depend on the rheological 

properties of the drilling fluid. Many studies have focused on determining the rheological parameters that are most useful 

for improving the hole efficiency [4] . 

In case of horizontal drilling, as mentioned by Caenn and Chillingar [5] , hole cleaning and maintaining the integrity of 

the well bore are the main issues. Another important parameter, mentioned by Siginer and Bakhtiyavou [6] is the effect of 

the eccentricity of pipe on the flow of well bore fluids. For deep drillings, in addition to external factors such as temperature, 

pressure etc., contributing to instability problems in mudrocks, intrinsic factors such as permeability, deformation properties, 

etc., are also important factors related to mudrock instability [7] . Slawomriski [8] , for example, indicated that even though 

the Bingham plastic model is often used in modeling the drilling fluids, some studies have shown that many of the drilling 

fluids are non-linear fluids with memory. Briscoe et al. [9] indicate that in high pressure and high temperature environment, 
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Nomenclature 

Symbol Explanation 

b body force vector 

φ concentration 

D symmetric part of the velocity gradient 

g acceleration due to gravity 

h characteristic length 

l identity tensor 

L gradient of the velocity vector 

n power-law index 

t time 

T Cauchy stress tensor 

v r reference velocity 

ρ bulk density 

μr reference viscosity 

η effective viscosity 

θ temperature 

div divergence operator 

∇ gradient symbol 

the yield stress and the plastic viscosity of the muds are also influenced by pressure and temperature. Al-Zuhrani [10] 

suggested a generalized shear-thinning model where the effect of yield stress are included. 

The objective of the present paper is to study the fully developed Couette flow of a drilling fluid, and explore the effects 

of concentration and shear-rate-dependent viscosity. In the next section, the governing equations of motion are provided. 

Section 3 focuses on the constitutive relations for the stress tensor and the diffusive particle flux vector. In Section 4 , we 

describe the geometry of the problem and provide the derivation for the one-dimensional form of the governing equations, 

as well as the boundary conditions. In Section 5 , we outline the numerical scheme we have used. In Section 6 , the numerical 

results are presented through a parametric study by varying the dimensionless numbers. 

2. Governing equations 

If the drilling fluid is treated as a single component (phase) material then, in the absence of any electro-magnetic effects, 

the governing equations of motion are the conservations of mass, linear momentum, angular momentum, concentration and 

the energy equation. If the drilling fluid is modeled as a multi-component material, then the governing equations should be 

given for all the components, and a multi-phase approach should be taken, this requires not only constitutive relations for 

each component, but also for the interactions among the components. [11–14] . In this paper, we assume that the drilling 

fluid can be treated as a single component non-homogenous fluid. As a result, the governing equations are [3,15] : 

2.1. Conservation of mass 

∂ρ

∂t 
+ di v ( ρv ) = 0 (1) 

where ρ is the density of the fluid, ∂ /∂ t is the partial derivative with respect to time, and v is the velocity vector. For an 

isochoric motion we have di v v = 0 . 

2.2. Conservation of linear momentum 

ρ
d v 
dt 

= di v T + ρb (2) 

where b is the body force vector, T is the Cauchy stress tensor, and d /d t is the total time derivative, given by d (. ) /d t = 

∂ (. ) /∂ t + [ grad(. ) ] v . The conservation of angular momentum indicates that in the absence of couple stresses the stress ten- 

sor is symmetric, that is, T = T T . 

In suspension flows, the particle concentration is, in general, not constant and in many applications, it is necessary to 

have an additional equation, often called the convection–diffusion equation. Here, we use the particle concentration equation 

for φ as discussed in [15] , based on [16] , where 
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