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a b s t r a c t 

In this paper, a two-grid block-centered finite difference scheme is introduced and an- 

alyzed to solve the nonlinear parabolic integro-differential equation arising in modeling 

non-Fickian flow in porous media. This method is considered where the nonlinear prob- 

lem is solved only on a coarse grid of size H and a linear problem is solved on a fine grid 

of size h . Error estimates are established on non-uniform rectangular grid which show that 

the discrete L ∞ ( L 2 ) and L 2 ( H 

1 ) errors are O (� t + h 2 + H 

3 ) . Finally, some numerical exper- 

iments are presented to show the efficiency of the two-grid method and verify that the 

convergence rates are in agreement with the theoretical analysis. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

In this paper, we consider the nonlinear integro-differential equation arising in modeling non-Fickian flow in porous 

media. 

Find p = p( x , t) such that ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

∂ p 

∂t 
− ∇ ·

(
a ( x , t, p) ∇p + 

∫ t 
0 b( x , s, p) ∇p( x , s ) ds 

)
= f ( x , t, p) , x ∈ �, t ∈ J, 

∇p( x , t) · n = 0 , x ∈ ∂�, t ∈ J, 

p | t=0 = p 0 ( x ) , x ∈ � ∪ ∂�. 

(1) 

where � is a rectangular domain in R 2 , n is the unit outward normal vector of the domain �. J = (0 , T ] , and T denotes the 

final time. 

Problem (1) is very important in the transfer of reaction and passive contaminates in aquifers. This model is complicated 

by the history effect, which characterizes various mixing length growth of flow [1,2] and arises from many physical processes 

in which it is necessary to take into account the effects of memory due to the deficiency of the usual diffusion equations. As 

shown in [3,4] , non-Fickian flow of fluid in porous media can be served as engineering model for nonlocal reactive transport. 

Besides, it can also demonstrate heat conduction with memory [3] . 

There are many papers on the numerical methods for this kind of problems. Ewing et al. [5] and Lin et al. [6] presented 

the finite volume methods for this problem. And finite element methods for this problem have been considered in [7] . Some 
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numerical methods for integro-differential equations of parabolic and hyperbolic types have been demonstrated in [8] . And 

it is presented split least-squares finite element methods for non-Fickian flow in porous media in [9] . Moreover, mixed 

element methods for this problem are given in [10] . Wing and his coworkers presented the backward Euler mixed FEM and 

regularity of parabolic integro-differential equations [11] . Furthermore, it’s considered a two-grid expanded mixed element 

method for nonlinear non-Fickian flow model [12] . 

Block-centered finite differences, sometimes called cell-centered finite differences, can be thought as the lowest order 

Raviart–Thomas mixed element method [13] , with proper quadrature formulation. In [14] , Wheeler presented the mixed 

finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. And in 2012, a block-centered 

finite difference method for the Darcy–Forchheimer model was considered [15] . In [16,17] block-centered finite difference 

methods were developed. 

However, as far as we know, there is no two-grid block-centered finite difference methods for nonlinear non-Fickian flow 

model. And we propose the corresponding algorithm in this paper. The idea for two-grid scheme is taken from Xu [18] 

and Wheeler with his coworkers [19] . Error estimates are established rigorously and carefully on non-uniform rectangular 

grid which show that the discrete L ∞ ( L 2 ) and L 2 ( H 

1 ) errors are O (� t + h 2 + H 

3 ) . Finally, some numerical experiments are 

presented to show the efficiency of the two-grid method and verify that the convergence rates are in agreement with 

the theoretical analysis. Moreover, we also give the numerical examples of the nonlinear implicit scheme to illustrate the 

efficiency of the two-grid block-centered finite difference method. 

The paper is organized as follows. In Section 2 we give some preliminaries. In Section 3 we present a two-grid character- 

istic block-centered finite difference algorithm and corresponding error estimates. In Section 4 some numerical experiments 

are carried out, which show that the convergence rates are in agreement with the theoretical analysis. Finally, conclusions 

and extensions are drawn in the last section. 

Throughout the paper we use C , with or without subscript, to denote a positive constant, which could have different 

values at different appearances. 

2. Preliminaries 

Firstly, in this section, we define some notations. Let N > 0 be a positive integer. Set � t = T /N, t n = n � t, f or n ≤ N. 

Let L p ( �) be the standard Banach space with norm 

‖ v ‖ L p (�) = 

(∫ 
�

| v | p d�
)1 /p 

. 

For simplicity, let ( ·, ·) denote the L 2 ( �) inner product. And W 

k 
p (�) be the standard Sobolev space 

W 

k 
p (�) = { g : ‖ g‖ W 

k 
p (�) < ∞} , 

where 

‖ g‖ W 

k 
p (�) = 

( ∑ 

| α|≤k 

‖ D 

αg‖ 

p 

L p (�) 

) 1 /p 

. 

Let S = L 2 (�) and W = H(�, di v ) = { w ∈ (L 2 (�)) d , ∇ · w ∈ L 2 (�) } . And W 

0 is denoted as the subspaces of W containing 

functions with normal traces equal to 0. 

Let � h be the quasi-uniform partition of � into rectangles in two dimensions with mesh size h . The lowest-order Raviart–

Thomas–N ́e d ́e lec (RTN) space on rectangles [13,20] is considered. Thus, on an element D ∈ � h , we have 

W h (D ) = { (α1 x + β1 , α2 y + β2 ) 
T : αi , βi ∈ R, i = 1 , 2 } , 

S h (D ) = { α : α ∈ R } . 
Next the standard nodal basis is used, where the nodes are at the centers of the elements for S h , and the nodes are at 

the midpoints of edges for W h . Moreover, the grid points are denoted by 

(x i +1 / 2 , y j+1 / 2 ) , i = 0 , . . . , N 

h 
x , j = 0 , . . . , N 

h 
y , 

next the notations similar to those in [21] are used. 

x i = (x i − 1 
2 

+ x i + 1 2 
) / 2 , i = 1 , . . . , N 

h 
x , 

h 

x 
i = x i + 1 2 

− x i − 1 
2 
, i = 1 , . . . , N 

h 
x , 

h 

x 
i + 1 2 

= x i +1 − x i = (h 

x 
i + h 

x 
i +1 ) / 2 , i = 1 , . . . , N 

h 
x − 1 , 

y j = (y j− 1 
2 

+ y j+ 1 2 
) / 2 , j = 1 , . . . , N 

h 
y , 

h 

y 
j 

= y j+ 1 2 
− y j− 1 

2 
, j = 1 , . . . , N 

h 
y , 
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