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In this paper, we propose a moving mesh method with a Newton total variation dimin- 

ishing (TVD) Runge–Kutta scheme for the Euler equations. Our scheme improves time dis- 

cretization in the moving mesh algorithms. By analyzing the semi-discrete Euler equations 

with the discrete moving mesh equations as constraints, the stability of the Newton TVD 

Runge–Kutta scheme is proved. Thus, we can conclude that the proposed algorithm can 

generate a weak solution to the Euler equations. Finally, numerical examples are presented 

to verify the theoretical results and demonstrate the accuracy of the proposed scheme. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

We are concerned with numerical solutions of the one-dimensional Euler equations. The Euler equations are a system of 

hyperbolic conservation laws that have important applications in the physical sciences and engineering fields such as solid 

and fluid dynamics, combustion, etc. [1] . Many problems (i.e., fronts or shocks) are characterized by moving discontinuities. 

A major challenge in obtaining the numerical solutions of these problems is to capture the discontinuous solutions with 

sufficient accuracy while keeping the computational cost within acceptable limits. 

Since the contact discontinuities of solutions for nonlinear hyperbolic conservation laws often exhibit a wide range of lo- 

calized structures, mesh adaptation is an indispensable tool for obtaining efficient numerical solutions. There are three types 

of mesh adaptive methods: h -methods, p -methods, and r -methods [2–4] . The r -methods are also called moving mesh meth- 

ods, which relocate mesh point positions while maintaining the total number of mesh points and the mesh connectivity. In 

this paper, we study the moving mesh methods in order to obtain the numerical solution of a gas dynamics system. Some 

success has been achieved in solving hyperbolic problems on adaptive spatial meshes. Harten and Hyman [5] were the first 

to show how a Godunov scheme can be extended to handle moving grids in one-dimension, which improves the resolution 

of shocks and contact discontinuities. Subsequently, many studies on moving mesh methods for hyperbolic problems have 

been conducted. Berger and LeVeque proposed a mesh refinement method in which the mesh is refined locally based on 

some measure of the solution error using Cartesian sub-grids; this approach is especially successful in the case of higher- 

dimensional problems [6] . Stockie et al. developed an adaptive method that combines the flexibility and accuracy afforded 

by a dynamically moving mesh with the increased shock resolution capability of a Godunov-type scheme [7] . In particular, 

they constructed different monitor functions to capture shocks and discontinuities in different regions of physical solutions. 

One- and two-dimensional conservation laws were solved by Tang and Tang [8] using rezoning moving mesh methods that 
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consist of two alternating parts: physical PDE time evolution and mesh redistribution. Further conservative interpolation 

was used to transfer the solution from the old mesh to the new mesh. This method has been shown to generally work well 

for hyperbolic conservation. 

Only a few studies on time discretization have been conducted for moving mesh algorithms. Soheili and Salahshour 

studied dynamical moving mesh methods with local time-stepping techniques and applied the new method to blow-up 

problems [9] . Shu and Osher developed a total variation diminishing (TVD) Runge–Kutta method [10] for TVD high-order 

time discretization. The objective of high-order TVD Runge–Kutta time discretization is to maintain the TVD property while 

achieving higher-order accuracy in time. Such an approach has been shown to work very well for hyperbolic conservation 

laws [11] . The semi-discrete hyperbolic conservation laws and the discrete moving mesh equations form nonlinear differ- 

ential algebraic equations [12] , where the discrete moving mesh equations are the constraints. Thus far, to the best of our 

knowledge, there has been no discussion regarding the use of the TVD Runge–Kutta method in such a system, i.e., the 

coupling of the semi-discrete hyperbolic conservation laws with the discrete moving mesh equations. In fact, differential al- 

gebraic equations with constraints can be regularized as an index-two system [13,14] . Based on previous work, we propose 

a moving mesh algorithm with a Newton TVD Runge–Kutta scheme for the Euler equations, which improves time discretiza- 

tion in the moving mesh algorithms. The remainder of this paper is organized as follows. Section 2 describes the proposed 

method and presents the stability analysis. Section 3 provides some numerical examples. Finally, Section 4 summarizes our 

findings and concludes the paper with a brief discussion on the scope for future work. 

2. Method 

2.1. System 

The Euler equations describing the evolution of an inviscid, compressible, polytropic gas in one-dimension are 
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In these equations, ρ is the density, u is the velocity, p is the pressure, and E is the total energy, and γ is the specific heat 

ratio. Further, x represents the physical coordinates and ξ is introduced as the physical coordinates. A one-to-one coordinate 

transformation from the computational domain �c to the physical domain �p is denoted by 

x = x ( ξ ) , ξ ∈ �c . (3) 

In practice, the uniform mesh ξ j , j = 0 , 1 , . . . , N, is given on the computational domain, where N is a certain positive integer, 

and the corresponding mesh points in the physical domain are given by 

a ≡ x 0 < x 1 < x 2 < · · · < x N−1 < x N ≡ b. (4) 

Let M ( ξ , ū ) be a chosen positive monitor function that controls the moving mesh. Since the purpose is to achieve higher 

accuracy near the nonsmooth part of the solution, we introduce the monitor function of pseudo arc-length norm [15,16] 

M ( ξ , ū ) = 

√ 
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(
∂ ̄u 
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)2 

. (5) 

This monitor function places an emphasis on error control near rapid variation of the solution function. Here, α is the 

control coefficient and ū is the chosen physical value. Following the integral form of the equidistribution principle [17,18] , 

the transformation (3) satisfies ∫ x ( ξ ) 

a 
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∫ b 

a 

M ( s ) ds . (6) 

Differentiating (6) with respect to ξ twice, we have 
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}
= 0 (7) 

Introducing an artificial time t̄ , in which the mesh relaxes toward equidistribution, we have the following equation of the 

moving mesh PDE: 
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