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a b s t r a c t 

A graph is called integral if all eigenvalues of its adjacency matrix consist en- 

tirely of integers. In this paper, we investigate integral trees S(r; m i ) = S(a 1 + a 2 + · · · + 

a s ; m 1 , m 2 , . . . , m s ) of diameter 4 with s = 3 , 4 , 5 , 6 . Such integral trees are found by us- 

ing a computer search or solving the Diophantine equations. New sufficient conditions for 

a construction of infinite families of integral trees S(r ′ ; m i ) = S(b 1 + · · · + b s ; m 1 , . . . , m s ) of 

diameter 4 from given integral trees S(r; m i ) = S(a 1 + · · · + a s ; m 1 , . . . , m s ) of diameter 4 

are given. Further, using these conditions we construct infinitely many new classes of in- 

tegral trees S(r ′ ; m i ) = S(b 1 + · · · + b s ; m 1 , . . . , m s ) of diameter 4 with s = 3 , 4 , 5 , 6 . Finally, 

we propose two basic open problems about integral trees of diameter 4 for further study. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Let G be a simple graph with vertex set V (G ) = { v 1 , v 2 , . . . , v n } and edge set E ( G ). The adjacency matrix A ( G ) of G is 

defined as an n × n matrix A (G ) = (a i j ) , where a i j = 1 if v i is adjacent to v j , and a i j = 0 otherwise. The characteristic 

polynomial of G is the polynomial P (G, x ) = det(xI n − A (G )) , where I n denotes the n × n identity matrix. Let λ1 < λ2 < 

��� < λt be t distinct eigenvalues of P ( G , x ) with the corresponding multiplicities k 1 , k 2 , . . . , k t . The spectrum of A ( G ) is also 

called the spectrum of G and denoted by Spec(G ) = ( λ1 λ2 ··· λt−1 λt 
k 1 k 2 ··· k t−1 k t 

) . 

We know that trees of diameter 4 can be formed by joining the centers of r stars K 1 ,m 1 
, K 1 ,m 2 

, . . . , K 1 ,m r 
to a new 

vertex v . The tree is denoted by S(r; m 1 , m 2 , . . . , m r ) or simply S ( r ; m i ). Assume that the number of distinct integers 

of m 1 , m 2 , . . . , m r is s . Without loss of generality, assume that the first s ones are the distinct integers such that 0 ≤
m 1 < m 2 < ���< m s . Suppose that a i is the multiplicity of m i for each i = 1 , 2 , . . . , s . The tree S ( r ; m i ) is also denoted by 

S(a 1 + a 2 + · · · + a s ; m 1 , m 2 , . . . , m s ) , where r = 

∑ s 
i =1 a i and | V | = 1 + 

∑ s 
i =1 a i (m i + 1) . For all other facts on graph spectra (or 

terminology), see [7,8] . 

A graph G is called integral if all eigenvalues of its characteristic polynomial P ( G , x ) are integers, that is, all eigenvalues 

of its adjacency matrix A ( G ) consist entirely of integers. Since 1974, when Harary and Schwenk [11] proposed the ques- 

tion “Which graphs have integral spectra?”, the research for integral graphs has been done (see the survey [3] and the 

Ph.D. thesis [23] ). For some results about integral trees and integral graphs can be found in [3,4,6,10–14,18–20,23–29] and 

[1–3,7,8,11,22,23] , respectively. It has been discovered recently [2,5,22] that integral graphs can play a role in the so-called 
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perfect state transfer in quantum spin networks of quantum computing. In addition, there are also many results about some 

topological indices based on degree-based indices (e.g., Randi ́c index [16,21] ), distance-based indices (e.g., Wiener index [9] , 

Wiener polarity index [17] ) and spectrum-based indices (e.g., graph energy [15] ). 

In this paper, we investigate integral trees S(r; m i ) = S(a 1 + a 2 + · · · + a s ; m 1 , m 2 , . . . , m s ) of diameter 4 with s = 3 , 4 , 5 , 6 . 

Such integral trees are found by using a computer search or solving the Diophantine equations. New sufficient conditions for 

a construction of infinite families of integral trees S ( r ′ ; m i ) = S(b 1 + · · · + b s ; m 1 , . . . , m s ) of diameter 4 from given integral 

trees S(r; m i ) = S(a 1 + · · · + a s ; m 1 , . . . , m s ) of diameter 4 are given. Further, using these conditions we construct infinitely 

many new classes of integral trees S(r ′ ; m i ) = S(b 1 + · · · + b s ; m 1 , . . . , m s ) of diameter 4 with s = 3 , 4 , 5 , 6 . These results are 

a new contribution to the search of such integral trees. Finally, we propose two basic open problems about integral trees of 

diameter 4 for further study. 

2. Preliminaries 

In this section, we state some known results on integral trees of diameter 4. 

Lemma 2.1 [14 , 25] . For the tree S(r; m i ) = S(a 1 + · · · + a s ; m 1 , . . . , m s ) of diameter 4, then we have 

P [ S(r; m i ) , x ] = P [ S(a 1 + · · · + a s ; m 1 , . . . , m s ) , x ] = x 1+ ∑ s 
i =1 a i (m i −1) 

·
s ∏ 

i =1 

(x 2 − m i ) 
a i −1 

[ 

s ∏ 

i =1 

(x 2 − m i ) −
s ∑ 

i =1 

a i 

s ∏ 

j =1 , j � = i 
(x 2 − m j ) 

] 

. 

Theorem 2.2 [26] . The tree S ( r ; m i ) = S(a 1 + a 2 + · · · + a s ; m 1 , m 2 , . . . , m s ) of diameter 4 is integral if and only if (i) a i = 1 must 

hold if m i is not a perfect square, (ii) all solutions of the following equation are integers. 

s ∑ 

i =1 

a i 
x 2 − m i 

= 1 . (1) 

Moreover, there exist positive integers u 1 , u 2 , . . . , u s satisfying 

0 ≤ √ 

m 1 < u 1 < 

√ 

m 2 < u 2 < · · · < u s −1 < 

√ 

m s < u s < + ∞ (2) 

such that the following linear equation system in a 1 , a 2 , . . . , a s has positive integral solutions ( a 1 , a 2 , . . . , a s ), and such that a i = 1 

must hold if m i is not a perfect square. ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

a 1 

u 

2 
1 

− m 1 

+ 

a 2 

u 

2 
1 

− m 2 

+ · · · + 

a s 

u 

2 
1 

− m s 

= 1 , 

. . . . . . . . . . . . . . . . . . 

a 1 

u 

2 
s − m 1 

+ 

a 2 

u 

2 
s − m 2 

+ · · · + 

a s 

u 

2 
s − m s 

= 1 . 

(3) 

Theorem 2.3 [13 , 29] . The tree S ( r ; m i ) = S(a 1 + · · · + a s ; m 1 , . . . , m s ) of diameter 4 is integral if and only if there exist positive 

integers u i and nonnegative integers m i (i = 1 , 2 , . . . , s ) such that 0 ≤ √ 

m 1 < u 1 < 

√ 

m 2 < u 2 < · · · < u s −1 < 

√ 

m s < u s < + ∞ , 

and such that 

a k = 

∏ s 
i =1 (u 

2 
i 

− m k ) ∏ s 
i =1 ,i � = k (m i − m k ) 

, (k = 1 , 2 , . . . , s ) (4) 

are positive integers, and such that a i = 1 must hold if m i is not a perfect square. (Note that u i are eigenvalues of the tree). 

Corollary 2.4 [28 , 29] . If the tree S ( r ; m i ) = S(a 1 + a 2 + · · · + a s ; m 1 , m 2 , . . . , m s ) of diameter 4 is integral, then we have the 

following results. 

1. a 1 > 1 . Moreover m 1 is a perfect square. 

2. r = 

∑ s 
i =1 a i = 

∑ s 
i =1 u 

2 
i 

− ∑ s 
i =1 m i . 

Theorem 2.5 [26] . If m 1 ( ≥ 0), m 2 , . . . , m s are perfect squares, then the tree S(a 1 + a 2 + · · · + a s ; m 1 , m 2 , . . . , m s ) of diameter 

4 is integral if and only if the tree S(a 1 n 
2 + a 2 n 

2 + · · · + a s n 
2 ; m 1 n 

2 , m 2 n 
2 , . . . , m s n 

2 ) is integral for any positive integer n. 

Remark 2.6 (see also [26] ) . Let GCD (p 1 , p 2 , . . . , p s ) denote the greatest common divisor of the numbers p 1 , p 2 , . . . , p s . For 

m 1 ( ≥ 0), m 2 , . . . , m s are perfect squares, we say that a vector (a 1 , a 2 , . . . , a s , m 1 , m 2 , . . . , m s ) is primitive if GCD (a 1 , a 2 , . . . , a s , 

m 1 , m 2 , . . . , m s ) = 1 . Theorem 2.5 shows that it is reasonable to study Eq. (3) only for primitive vector ( a 1 , a 2 , . . . , a s , m 1 , 

m 2 , . . . , m s ) . 
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