Integral trees with diameter four

Ligong Wang ${ }^{\text {a,* }}$, Qi Wang ${ }^{\text {b }}$, Bofeng Huo ${ }^{\text {c }}$
${ }^{a}$ Department of Applied Mathematics, School of Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
${ }^{\mathrm{b}}$ Department of Information Security and Electronic Commerce, School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
${ }^{\text {c }}$ Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, PR China

A R T I C L E I N F O

MSC:

05C05
05C50
11D41
Keywords:
Integral tree
Adjacency matrix
Diophantine equation
Graph spectrum

Abstract

A graph is called integral if all eigenvalues of its adjacency matrix consist entirely of integers. In this paper, we investigate integral trees $S\left(r ; m_{i}\right)=S\left(a_{1}+a_{2}+\cdots+\right.$ $a_{s} ; m_{1}, m_{2}, \ldots, m_{s}$) of diameter 4 with $s=3,4,5,6$. Such integral trees are found by using a computer search or solving the Diophantine equations. New sufficient conditions for a construction of infinite families of integral trees $S\left(r^{\prime} ; m_{i}\right)=S\left(b_{1}+\cdots+b_{s} ; m_{1}, \ldots, m_{s}\right)$ of diameter 4 from given integral trees $S\left(r ; m_{i}\right)=S\left(a_{1}+\cdots+a_{s} ; m_{1}, \ldots, m_{s}\right)$ of diameter 4 are given. Further, using these conditions we construct infinitely many new classes of integral trees $S\left(r^{\prime} ; m_{i}\right)=S\left(b_{1}+\cdots+b_{s} ; m_{1}, \ldots, m_{s}\right)$ of diameter 4 with $s=3,4,5,6$. Finally, we propose two basic open problems about integral trees of diameter 4 for further study.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. The adjacency matrix $A(G)$ of G is defined as an $n \times n$ matrix $A(G)=\left(a_{i j}\right)$, where $a_{i j}=1$ if v_{i} is adjacent to v_{j}, and $a_{i j}=0$ otherwise. The characteristic polynomial of G is the polynomial $P(G, x)=\operatorname{det}\left(x I_{n}-A(G)\right)$, where I_{n} denotes the $n \times n$ identity matrix. Let $\lambda_{1}<\lambda_{2}<$ $\cdots<\lambda_{t}$ be t distinct eigenvalues of $P(G, x)$ with the corresponding multiplicities $k_{1}, k_{2}, \ldots, k_{t}$. The spectrum of $A(G)$ is also called the spectrum of G and denoted by $\operatorname{Spec}(G)=\left(\begin{array}{lllll}\lambda_{1} & \lambda_{2} & \cdots & \lambda_{t-1} & \lambda_{t} \\ k_{1} & k_{2} & \cdots & k_{t-1} & k_{t}\end{array}\right)$.

We know that trees of diameter 4 can be formed by joining the centers of r stars $K_{1, m_{1}}, K_{1, m_{2}}, \ldots, K_{1, m_{r}}$ to a new vertex v. The tree is denoted by $S\left(r ; m_{1}, m_{2}, \ldots, m_{r}\right)$ or simply $S\left(r ; m_{i}\right)$. Assume that the number of distinct integers of $m_{1}, m_{2}, \ldots, m_{r}$ is s. Without loss of generality, assume that the first s ones are the distinct integers such that $0 \leq$ $m_{1}<m_{2}<\cdots<m_{s}$. Suppose that a_{i} is the multiplicity of m_{i} for each $i=1,2, \ldots, s$. The tree $S\left(r ; m_{i}\right)$ is also denoted by $S\left(a_{1}+a_{2}+\cdots+a_{s} ; m_{1}, m_{2}, \ldots, m_{s}\right)$, where $r=\sum_{i=1}^{s} a_{i}$ and $|V|=1+\sum_{i=1}^{s} a_{i}\left(m_{i}+1\right)$. For all other facts on graph spectra (or terminology), see $[7,8]$.

A graph G is called integral if all eigenvalues of its characteristic polynomial $P(G, x)$ are integers, that is, all eigenvalues of its adjacency matrix $A(G)$ consist entirely of integers. Since 1974, when Harary and Schwenk [11] proposed the question "Which graphs have integral spectra?", the research for integral graphs has been done (see the survey [3] and the Ph.D. thesis [23]). For some results about integral trees and integral graphs can be found in [3,4,6,10-14,18-20,23-29] and [1-3,7,8,11,22,23], respectively. It has been discovered recently [2,5,22] that integral graphs can play a role in the so-called

[^0]perfect state transfer in quantum spin networks of quantum computing. In addition, there are also many results about some topological indices based on degree-based indices (e.g., Randić index [16,21]), distance-based indices (e.g., Wiener index [9], Wiener polarity index [17]) and spectrum-based indices (e.g., graph energy [15]).

In this paper, we investigate integral trees $S\left(r ; m_{i}\right)=S\left(a_{1}+a_{2}+\cdots+a_{s} ; m_{1}, m_{2}, \ldots, m_{s}\right)$ of diameter 4 with $s=3,4,5,6$. Such integral trees are found by using a computer search or solving the Diophantine equations. New sufficient conditions for a construction of infinite families of integral trees $S\left(r^{\prime} ; m_{i}\right)=S\left(b_{1}+\cdots+b_{s} ; m_{1}, \ldots, m_{s}\right)$ of diameter 4 from given integral trees $S\left(r ; m_{i}\right)=S\left(a_{1}+\cdots+a_{s} ; m_{1}, \ldots, m_{s}\right)$ of diameter 4 are given. Further, using these conditions we construct infinitely many new classes of integral trees $S\left(r^{\prime} ; m_{i}\right)=S\left(b_{1}+\cdots+b_{s} ; m_{1}, \ldots, m_{s}\right)$ of diameter 4 with $s=3,4,5,6$. These results are a new contribution to the search of such integral trees. Finally, we propose two basic open problems about integral trees of diameter 4 for further study.

2. Preliminaries

In this section, we state some known results on integral trees of diameter 4.
Lemma $2.1[14,25]$. For the tree $S\left(r ; m_{i}\right)=S\left(a_{1}+\cdots+a_{s} ; m_{1}, \ldots, m_{s}\right)$ of diameter 4, then we have

$$
\begin{aligned}
& P\left[S\left(r ; m_{i}\right), x\right]=P\left[S\left(a_{1}+\cdots+a_{s} ; m_{1}, \ldots, m_{s}\right), x\right]=x^{1+\sum_{i=1}^{s} a_{i}\left(m_{i}-1\right)} \\
& \cdot \prod_{i=1}^{s}\left(x^{2}-m_{i}\right)^{a_{i}-1}\left[\prod_{i=1}^{s}\left(x^{2}-m_{i}\right)-\sum_{i=1}^{s} a_{i} \prod_{j=1, j \neq i}^{s}\left(x^{2}-m_{j}\right)\right]
\end{aligned}
$$

Theorem 2.2 [26]. The tree $S\left(r ; m_{i}\right)=S\left(a_{1}+a_{2}+\cdots+a_{s} ; m_{1}, m_{2}, \ldots, m_{s}\right)$ of diameter 4 is integral if and only if (i) $a_{i}=1$ must hold if m_{i} is not a perfect square, (ii) all solutions of the following equation are integers.

$$
\begin{equation*}
\sum_{i=1}^{s} \frac{a_{i}}{x^{2}-m_{i}}=1 \tag{1}
\end{equation*}
$$

Moreover, there exist positive integers $u_{1}, u_{2}, \ldots, u_{s}$ satisfying

$$
\begin{equation*}
0 \leq \sqrt{m_{1}}<u_{1}<\sqrt{m_{2}}<u_{2}<\cdots<u_{s-1}<\sqrt{m_{s}}<u_{s}<+\infty \tag{2}
\end{equation*}
$$

such that the following linear equation system in $a_{1}, a_{2}, \ldots, a_{s}$ has positive integral solutions ($a_{1}, a_{2}, \ldots, a_{s}$), and such that $a_{i}=1$ must hold if m_{i} is not a perfect square.

$$
\left\{\begin{array}{l}
\frac{a_{1}}{u_{1}^{2}-m_{1}}+\frac{a_{2}}{u_{1}^{2}-m_{2}}+\cdots+\frac{a_{s}}{u_{1}^{2}-m_{s}}=1 \tag{3}\\
\cdots \cdots \cdots \\
\frac{a_{1}}{u_{s}^{2}-m_{1}}+\frac{a_{2}}{u_{s}^{2}-m_{2}}+\cdots+\frac{a_{s}}{u_{s}^{2}-m_{s}}=1
\end{array}\right.
$$

Theorem 2.3 [13, 29]. The tree $S\left(r ; m_{i}\right)=S\left(a_{1}+\cdots+a_{s} ; m_{1}, \ldots, m_{s}\right)$ of diameter 4 is integral if and only if there exist positive integers u_{i} and nonnegative integers $m_{i}(i=1,2, \ldots, s)$ such that $0 \leq \sqrt{m_{1}}<u_{1}<\sqrt{m_{2}}<u_{2}<\cdots<u_{s-1}<\sqrt{m_{s}}<u_{s}<+\infty$, and such that

$$
\begin{equation*}
a_{k}=\frac{\prod_{i=1}^{s}\left(u_{i}^{2}-m_{k}\right)}{\prod_{i=1, i \neq k}^{s}\left(m_{i}-m_{k}\right)}, \quad(k=1,2, \ldots, s) \tag{4}
\end{equation*}
$$

are positive integers, and such that $a_{i}=1$ must hold if m_{i} is not a perfect square. (Note that u_{i} are eigenvalues of the tree).
Corollary $2.4[28,29]$. If the tree $S\left(r ; m_{i}\right)=S\left(a_{1}+a_{2}+\cdots+a_{s} ; m_{1}, m_{2}, \ldots, m_{s}\right)$ of diameter 4 is integral, then we have the following results.

1. $a_{1}>1$. Moreover m_{1} is a perfect square.
2. $r=\sum_{i=1}^{S} a_{i}=\sum_{i=1}^{S} u_{i}^{2}-\sum_{i=1}^{S} m_{i}$.

Theorem 2.5 [26]. If $m_{1}(\geq 0), m_{2}, \ldots, m_{s}$ are perfect squares, then the tree $S\left(a_{1}+a_{2}+\cdots+a_{s} ; m_{1}, m_{2}, \ldots, m_{s}\right)$ of diameter 4 is integral if and only if the tree $S\left(a_{1} n^{2}+a_{2} n^{2}+\cdots+a_{s} n^{2} ; m_{1} n^{2}, m_{2} n^{2}, \ldots, m_{s} n^{2}\right)$ is integral for any positive integer n.

Remark 2.6 (see also [26]). Let $G C D\left(p_{1}, p_{2}, \ldots, p_{s}\right)$ denote the greatest common divisor of the numbers $p_{1}, p_{2}, \ldots, p_{s}$. For $m_{1}(\geq 0), m_{2}, \ldots, m_{s}$ are perfect squares, we say that a vector $\left(a_{1}, a_{2}, \ldots, a_{s}, m_{1}, m_{2}, \ldots, m_{s}\right)$ is primitive if $G C D\left(a_{1}, a_{2}, \ldots, a_{s}\right.$, $\left.m_{1}, m_{2}, \ldots, m_{s}\right)=1$. Theorem 2.5 shows that it is reasonable to study Eq. (3) only for primitive vector ($a_{1}, a_{2}, \ldots, a_{s}, m_{1}$, m_{2}, \ldots, m_{s}.

https://daneshyari.com/en/article/4625882

Download Persian Version:
https://daneshyari.com/article/4625882

Daneshyari.com

[^0]: * Corresponding author. Tel.: +86 2988431660.

 E-mail addresses: lgwangmath@163.com, lgwang@nwpu.edu.cn (L. Wang), wangqi@nwpu.edu.cn (Q. Wang), bofenghuo@163.com (B. Huo).

