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a b s t r a c t 

Many popular downside risk measures such as tail conditional expectation and conditional 

value-at-risk only characterize the tail expectation, but pay no attention to the tail vari- 

ance beyond the value-at-risk. This is a severe deficiency of risk management in finance 

and insurance industry, especially in measuring extreme risk with large losses. We derive 

the explicit formulae of the tail variance of portfolio under the assumption of generalized 

Laplace distribution, and mixture generalized Laplace distribution as well. Some numerical 

results of parameters related to the tail variance of portfolio are also provided. Finally, we 

present an example of application to optimization tail mean-variance portfolio. The empir- 

ical results show that the performance of optimal portfolio can be efficiently improved by 

controlling the tail variability of returns distribution. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

It is well recognized that the measure of risk has a crucial role in portfolio optimization under uncertainty. Value-at-risk 

(VaR), developed by JP Morgan, is one of the most popular risk measure widely employed by financial institutions. During 

the last decades, VaR has been become a standard risk measure written into industry regulations due to its conceptual 

simplicity, ease of computation and ready applicability. However, VaR also received severe criticisms from practitioners and 

researchers because it has undesirable mathematical characters such as lack of subadditivity, a notation in coherent risk 

measure framework initiated by Artzner et al. [3] , see also [1,37] for the very definition. VaR has also been charged for being 

too conservative, in that it takes no account of the magnitude of extreme loss beyond the VaR quantile. In fact, random loss 

variables with light-tailed distributions or heavy-tailed distributions may have the same VaR quantile (see [12] ). But they 

clearly do not have the same behavior in their extremes. Other criticisms of VaR come from [2] , who argued that the VaR 

is in general non-convex. As a result, the problem of minimizing VaR of a portfolio can have multiple local minimizes. 

To remedy the shortcoming inherent in VaR, Artzner et al. [3] proposed the use of expected shortfall, or ES for short, 

which is defined as the conditional expectation of loss beyond the VaR level. Other alternative measures include conditional 

value-at-risk (CVaR) in [33] , tail conditional expectation (TCE) in [3] , worst conditional expectation (WCE) in [4] , conditional 

drawdown-at-risk (CDaR) in [41] , tail standard deviation (TSD) in [13] , and translation-invariant and positive homogeneous 

(TIPH) risk measure in [23,24] . It is noteworthy that CVaR as a coherent risk measure coincides with ES and TCE under 

the assumption of continuity distribution, and CVaR also is rather appealing in portfolio optimization due to its attractive 
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properties such as convexity and continuity with respect to portfolio weights, see [15,40,43] for example. Nevertheless, CVaR 

is also criticized by Lim et al. [28] for being fragile in portfolio optimization due to estimation errors. 

While the risk measures mentioned above undoubtedly make remarkable improvement on VaR, they only are the linear 

probability weighted combination of losses beyond VaR. Some researchers argue that the higher orders of moments of the 

loss distribution should be considered in order to control and decrease the extreme loss. For example, Cheng and Wang 

[10] proposed a new coherent risk measure based on p -norms with application in realistic portfolio optimization, see [8,9] 

for further development. Again for instance, Valdez [38] examined the tail conditional variance (hereafter, TCV) for some 

common parametric families of distributions. Landsman [22] proposed the tail variance (TV) risk defined by the variance 

of the loss distribution beyond some critical value. They also established correspondingly a tail mean-variance portfolio 

selection model. Owadally and Landsman [30] further discussed the character of optimal portfolio under tail mean-variance 

criterion. Recently, El Methni et al. [12] introduced a new risk measure, the so-called conditional tail moment (CTM), which 

unifies all risk measures based on conditional moments of the loss variable beyond VaR such as TCE, TCV and CVaR, and 

they proposed a nonparametric approach to estimating these risk measures, see also [11] . 

It is worth noting that, much more attention has been paid to the TV risk measure because it considers the variability of 

the risk along the tail of distribution, see [25,35] and references therein. There has also been growing interesting in studying 

the evaluation the TV risk and its application to portfolio and capital allocation. For example, Furman and Landsman [13] 

investigated the TV risk measure under elliptical contoured distribution. Landsman et al. [25] derived formulae for the tail 

variance and the tail variance premium (TVP) of risks in a multivariate log-elliptical setting. Ignatieva and Landsman [17] 

investigated TCE and TVP for the family of symmetric generalized hyperbolic distribution. Xu and Mao [39] proposed a novel 

capital allocation rule based on the tail mean-variance principle. 

Motivated by the above discussion and Kamdem [18–20] , in which the author derived the closed-form expression of 

VaR and ES of linear portfolio under generalized elliptical distribution, generalized Laplace distribution and their mixture 

distributions respectively, in this paper, we will study the explicit expression of TV risk of linear portfolios with assets re- 

turns governed by a generalized Laplace distribution or the so-called generalized error distribution (GED), and a mixture 

of generalized Laplace distributions as well. Kmadem [20] suggested that generalized Laplace distribution is a considerable 

improvement over student t-distribution. The main shortcoming of the multivariate t-distribution is that all the marginal 

distributions must have the same degree of freedom, which implies that every risk factor has equally heavy tails. See also 

[29] for an empirical comparison between the t-distribution and the GED distribution. Additional important examples of 

heavy distribution are, for example, mixture normal distribution in [7] , asymmetric t-distribution in [42] , skew-normal dis- 

tribution in [5] , skew t-distribution in [14] . The overall review of such distribution is actually beyond the scope of the this 

paper, and more discussions are available in [6,21,36] and references therein. 

The remainder of the paper is organized as follows. Section 2 presents the explicit formulae of the TV risk of portfo- 

lio under the generalized Laplace distribution. Section 3 extends the explicit formulae of the TV risk of portfolio to the 

case of mixture generalized Laplace distribution. Section 4 presents an application to tail mean-variance optimal portfolio 

and an empirical example from Chinese stock market. After brief concluding remarks in section 5 , an appendix collects all 

mathematical proofs of the paper. 

2. Tail variance of portfolio under generalized Laplace distributions 

2.1. Some notations and downside risk measure 

In this section, we introduce some notations and familiar quantile risk measures. Let n ≥ 2 be the number of risky asset 

in the economy. The random rate of return of the j th asset is denoted by r i , and the rate of returns vector is denoted by 

r = (r 1 , r 2 , . . . , r n ) 
′ . Let μ and � be the expectation and variance–covariance matrix of r respectively. The investment weight 

vector ω = (ω 1 , ω 2 , . . . , ω n ) ′ is called a portfolio, where ω i is the fraction of wealth invested in asset i . The rate of return 

of portfolio is formulated by r ω = r ′ ω. Let X = −r ω stand for the loss of the portfolio. Denote μω = μ′ ω and σ 2 
ω = ω 

′ �ω as 

the expected rate of returns and variance of the rate of returns of the portfolio ω, respectively. 

Now we recall some downside risks based on quantile such as value-at-risk (VaR), tail conditional expectation (TCE) and 

expected shortfall (ES). The VaR and TCE of the portfolio at confidence level 1 − α are defined as 

V aR α(X ) = inf { x | P (X ≤ x ) ≥ 1 − α} , 
T CE α(X ) = E 

[
X | X > V aR α(X ) 

]
. 

This notation is closely related to ES and CVaR, because all of them, from the viewpoint of definition, describe the average 

loss that is greater than the VaR level, despite they are in general not coincident unless suitable condition, such as contin- 

uous probability distribution of returns, is satisfied. However, we note that these risk measures only describe the mean of 

tail loss beyond VaR, but pay no attention to the deviation of such tail loss. This is obviously inadequate for measuring tail 

risk, especially for the loss of extreme event with small probability but large loss amounts (see e.g., [16,34] ). To describe the 

variability of the tail loss and consequently better control the extreme risk, Valdez [38] proposed a tail conditional variance 

(TCV) defined as 

T CV α(X ) = E 
[
( X − E(X ) ) 

2 | X > V aR α(X ) 
]
. 
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