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a b s t r a c t

In this paper, a lattice Boltzmann model for the ion- and electron-acoustic solitary waves

in beam-plasma system is proposed. By using the Chapman–Enskog expansion and the

multi-scale time expansion, a series of partial differential equations in different time scales

are obtained. By selecting the appropriate moments of the equilibrium distribution func-

tions, the macroscopic equations are recovered. In numerical examples, we simulate the

propagation of the ion- and electron-acoustic solitary waves. Numerical results show that

the lattice Boltzmann method is an effective tool for the study of the ion- and electron-

acoustic solitary waves in plasma.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In several regions of the Earth’s magnetosphere, e.g., the bow shock, magnetosheath, magnetopause and on cusp field

lines, Polar cap boundary layer, auroral field lines, auroral kilometric radiation source region, and plasma sheet boundary

layer, the electrostatic solitary waves have been observed [1]. The frequency range of these electrostatic waves is much

higher than the ion-acoustic frequency, but still lower than the Langmuir wave frequency. Therefore, the waves can be con-

sidered as a kind of electron-acoustic waves. The studies of electron-acoustic solitary waves in space plasma have practical

significance.

The electron-acoustic solitary wave was first discovered in the study of plasma with high ion temperature and low

electron temperature. Electron-acoustic frequency is close to the ion plasma frequency, and the phase velocity is close to

the electron thermal velocity. The electron-acoustic solitary wave also can generate from the effects of high energy electron

beam flow or high temperature electron distribution on the low temperature electron distribution.

Many studies have been spent on the electron-acoustic solitary waves. Some multi-component plasmas models were

discussed to explain the solitary waves with negative potentials observed by Viking satellite [2–9]. The studies of Berthomier

et al. and EI-Taibany showed that solitons with positive polarity could be generated depending upon the beam velocity,

temperature and density [10–12]. Verheest et al. showed that even without the electron-beam component, the positive

potential electron-acoustic solitons can be generated [13]. The model of Kakad et al. supported the existence of solitons

having either positive or negative potentials [14]. Lakhina et al. have a detailed discussion about the earlier models, and

further research on the waves in space plasmas [1,15–19]. Even so, the accurate solution of many such problems is still

difficult. Therefore the numerical solutions of the problems need to be employed. In this paper, we focus on the simulation

of the ion- and electron-acoustic solitary waves in beam-plasma system by using the lattice Boltzmann method (LBM).

∗ Tel.: +86043184539342.

E-mail address: whm20110605@126.com, whm780921@sina.com

http://dx.doi.org/10.1016/j.amc.2016.01.007

0096-3003/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.amc.2016.01.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2016.01.007&domain=pdf
mailto:whm20110605@126.com
mailto:whm780921@sina.com
http://dx.doi.org/10.1016/j.amc.2016.01.007


H. Wang / Applied Mathematics and Computation 279 (2016) 62–75 63

The LBM is a numerical method which originated from a Boolean fluid model named as the lattice gas automata (LGA).

Unlike traditional numerical methods which solve macroscopic variables, the LBM is based on the mesoscopic kinetic equa-

tion for the particle distribution function [20–24]. By using the ensemble-averaged distribution functions, the Navier–Stokes

equations can be found from the lattice Boltzmann equation. Nowadays the LBM has established itself as a powerful tool

for the simulation of a wide range of physical phenomena such as the multiphase flows [25–30], multi-component flows

[26,31–33], flows of suspensions [34,35], porous media flows [36,37], compressible flows [38–40], the plasma [41], and rel-

ativistic hydrodynamics [42]. Additionally, the lattice Boltzmann models have been developed to simulate linear and non-

linear partial differential equations such as nonlinear Schrödinger equation [43–47], Burgers equation [48,49], wave motion

equation [50,51], the shallow equation [52], Lorenz equations [53], the Poisson equation [54–56], and the Richards equation

[57].

It is assumed that an unmagnetized plasma is affected by a high temperature electron flow. The high temperature elec-

trons velocity meets the Boltzmann distribution. So the low temperature electron fluid satisfies the equations
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The low temperature ion fluid satisfies the equations
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where ne represents electron density, ni represents ion density, ve is electron fluid velocity, vi is ion fluid velocity, � is the

normalized electrostatic potential, Q0 = me
mi

is the mass ratio of electronic and ion, αe = ne0
nh0

represents the ratio of unper-

turbed cold electron number and hot electron number.

The Poisson equation is

∂2�

∂x2
= ne + nh − ni, (5)

where nh = nh0 · exp �. Eqs. (1)–(5) are dimensionless equations. For simplicity, we assume the temperatures of the low

temperature electrons and ions are all zero, i.e. Te = Ti = 0.

In next section, we propose a lattice Boltzmann model for the ion- and electron-acoustic solitary waves in beam-plasma

system; in Section 3, we use the scheme to simulate the propagation of solitary waves; and in Section 4 some conclusions

are discussed.

2. Lattice Boltzmann model

2.1. Lattice Boltzmann equation

We define f σ
α (x, t) as the one-particle distribution function with species σ, at position x, time t with velocity eα . A

one-dimensional lattice with unit spacing is used on which each node has b neighbours connected by b links. In this lattice,

particles can only reside on the nodes and move to their neighbours along these links in the unit time step. Each node

is allowed to host rest particles and possesses b+1 discrete lattice velocities. In this paper, we select b = 2, therefore, the

lattice is a 3-bit lattice.

The lattice Boltzmann equation will be obtained as

f σ
α (x + eα, t + 1) − f σ

α (x, t) = − 1

τ
[ f σ

α (x, t) − f σ,eq
α (x, t)] + �σ

α (x, t), (6)

where f
σ,eq
α (x, t) is the equilibrium distribution function with species σ, at position x, time t with velocity eα , τ is the

single relaxation time, �σ
α is a non-collision term. We assume the equilibrium distribution f

σ,eq
α (x, t) meets the conservation

conditions∑
α

f σ,eq
α (x, t) =

∑
α

f σ
α (x, t). (7)

The Knudsen number ε is defined as ε = l
L , where l is the mean free path, and L is the characteristic length. It can be

taken as the time step 	t [50], thus, the lattice Boltzmann Eq. (6) in physical units is

f σ
α (x + εeα, t + ε) − f σ

α (x, t) = − 1

τ
[ f σ

α (x, t) − f σ,eq
α (x, t)] + �σ

α (x, t). (8)
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