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ARTICLE INFO ABSTRACT
KEyV_VOTdS-‘ In this paper, a lattice Boltzmann model for the ion- and electron-acoustic solitary waves
Lattice Boltzmann model in beam-plasma system is proposed. By using the Chapman-Enskog expansion and the

The ion- and electron-acoustic solitary wave

multi-scale time expansion, a series of partial differential equations in different time scales
Beam-plasma

are obtained. By selecting the appropriate moments of the equilibrium distribution func-
tions, the macroscopic equations are recovered. In numerical examples, we simulate the
propagation of the ion- and electron-acoustic solitary waves. Numerical results show that
the lattice Boltzmann method is an effective tool for the study of the ion- and electron-
acoustic solitary waves in plasma.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In several regions of the Earth’s magnetosphere, e.g., the bow shock, magnetosheath, magnetopause and on cusp field
lines, Polar cap boundary layer, auroral field lines, auroral kilometric radiation source region, and plasma sheet boundary
layer, the electrostatic solitary waves have been observed [1]. The frequency range of these electrostatic waves is much
higher than the ion-acoustic frequency, but still lower than the Langmuir wave frequency. Therefore, the waves can be con-
sidered as a kind of electron-acoustic waves. The studies of electron-acoustic solitary waves in space plasma have practical
significance.

The electron-acoustic solitary wave was first discovered in the study of plasma with high ion temperature and low
electron temperature. Electron-acoustic frequency is close to the ion plasma frequency, and the phase velocity is close to
the electron thermal velocity. The electron-acoustic solitary wave also can generate from the effects of high energy electron
beam flow or high temperature electron distribution on the low temperature electron distribution.

Many studies have been spent on the electron-acoustic solitary waves. Some multi-component plasmas models were
discussed to explain the solitary waves with negative potentials observed by Viking satellite [2-9]. The studies of Berthomier
et al. and El-Taibany showed that solitons with positive polarity could be generated depending upon the beam velocity,
temperature and density [10-12]. Verheest et al. showed that even without the electron-beam component, the positive
potential electron-acoustic solitons can be generated [13]. The model of Kakad et al. supported the existence of solitons
having either positive or negative potentials [14]. Lakhina et al. have a detailed discussion about the earlier models, and
further research on the waves in space plasmas [1,15-19]. Even so, the accurate solution of many such problems is still
difficult. Therefore the numerical solutions of the problems need to be employed. In this paper, we focus on the simulation
of the ion- and electron-acoustic solitary waves in beam-plasma system by using the lattice Boltzmann method (LBM).
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The LBM is a numerical method which originated from a Boolean fluid model named as the lattice gas automata (LGA).
Unlike traditional numerical methods which solve macroscopic variables, the LBM is based on the mesoscopic kinetic equa-
tion for the particle distribution function [20-24]. By using the ensemble-averaged distribution functions, the Navier-Stokes
equations can be found from the lattice Boltzmann equation. Nowadays the LBM has established itself as a powerful tool
for the simulation of a wide range of physical phenomena such as the multiphase flows [25-30], multi-component flows
[26,31-33], flows of suspensions [34,35], porous media flows [36,37], compressible flows [38-40], the plasma [41], and rel-
ativistic hydrodynamics [42]. Additionally, the lattice Boltzmann models have been developed to simulate linear and non-
linear partial differential equations such as nonlinear Schrodinger equation [43-47], Burgers equation [48,49], wave motion
equation [50,51], the shallow equation [52], Lorenz equations [53], the Poisson equation [54-56], and the Richards equation
[57].

It is assumed that an unmagnetized plasma is affected by a high temperature electron flow. The high temperature elec-
trons velocity meets the Boltzmann distribution. So the low temperature electron fluid satisfies the equations
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The low temperature ion fluid satisfies the equations
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where n, represents electron density, n; represents ion density, v, is electron fluid velocity, v; is ion fluid velocity, ® is the

normalized electrostatic potential, Qy = Z¢ is the mass ratio of electronic and ion, e, = 'Lg represents the ratio of unper-
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turbed cold electron number and hot elecéron number. "
The Poisson equation is
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where n, = nyg - exp ®. Eqs. (1)-(5) are dimensionless equations. For simplicity, we assume the temperatures of the low
temperature electrons and ions are all zero, i.e. T, = T; = 0.

In next section, we propose a lattice Boltzmann model for the ion- and electron-acoustic solitary waves in beam-plasma

system; in Section 3, we use the scheme to simulate the propagation of solitary waves; and in Section 4 some conclusions
are discussed.
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2. Lattice Boltzmann model
2.1. Lattice Boltzmann equation

We define fg (x,t) as the one-particle distribution function with species o, at position X, time t with velocity e,. A
one-dimensional lattice with unit spacing is used on which each node has b neighbours connected by b links. In this lattice,
particles can only reside on the nodes and move to their neighbours along these links in the unit time step. Each node
is allowed to host rest particles and possesses b+1 discrete lattice velocities. In this paper, we select b = 2, therefore, the
lattice is a 3-bit lattice.

The lattice Boltzmann equation will be obtained as
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where f9°U(x,t) is the equilibrium distribution function with species o, at position X, time t with velocity ey, T is the
single relaxation time, Qg is a non-collision term. We assume the equilibrium distribution f3°!(x, t) meets the conservation
conditions
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The Knudsen number ¢ is defined as € = % where [ is the mean free path, and L is the characteristic length. It can be
taken as the time step At [50], thus, the lattice Boltzmann Eq. (6) in physical units is
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