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a b s t r a c t

We present a new adaptive higher-order finite element method (hp-FEM) for the solution

of boundary value problems formulated in terms of partial differential equations (PDEs).

The method does not use any information about the problem to be solved which makes

it robust and equation-independent. It employs a higher-order reconstruction scheme

over local element patches which makes it faster and easier to parallelize compared to

hp-adaptive methods that are based on the solution of a reference problem on a globally

hp-refined mesh. The method can be used for the solution of linear as well as nonlinear

problems discretized by conforming or non-conforming finite element methods, and it can

be combined with arbitrary a posteriori error estimators. The performance of the method

is demonstrated by several examples carried out by the discontinuous Galerkin method.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Adaptive methods are an efficient tool for the numerical solution of PDEs. Automatic mesh refinement or, more generally,

an enhancement of the functional space where the approximate solution is sought, can significantly reduce the computa-

tional cost. A prominent place among adaptive methods has the hp-FEM which leads to unconditional exponential conver-

gence [1–4].

Various approaches to automatic adaptivity include refining an element without increasing its polynomial degree

(h-refinement), increasing the polynomial degree of an element without spatial subdivision (p-refinement), and performing

refinements that combine spatial splitting of an element with various distributions of the polynomial degrees in subele-

ments (genuine hp-refinement [5,6]).

To achieve exponential convergence, large higher-order elements must be used where the solution is smooth, and at the

same time small low-order elements must be used where the solution exhibits non-smooth features such as singularities or

internal/boundary layers. Therefore it would seem that looking at the smoothness of the solution is the best way to design

a hp-adaptive method. However, hp-adaptive strategies based on smoothness estimation usually can only decide between

h- and p-refinements because they do not have enough information to select optimal genuine hp-refinements [7–9].
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To take full advantage of genuine hp-refinements, one has to obtain more information about the error – not only as an

error estimate in the form of a number per element, but about its shape as a function that is defined inside an element.

This can be done by solving a reference problem on a globally hp-refined mesh [5,6,10]. It leads to superior convergence

rates in terms of degrees of freedom, but the reference problem tends to be huge and therefore the convergence is rather

slow in terms of computing time, see [11] where a deep comparison of different hp-strategies were compared.

In this paper we propose a novel method for automatic hp-adaptivity that is guided by the approximation error, but it

removes the tedious computation of the global reference solution. Instead, it calculates a more accurate approximation on

local element patches constructed for each element separately. With the aid of a weighted least square reconstruction, we

construct piecewise polynomial function which approximate the exact solution. The presented hp-adaptive strategy is based

on comparing the higher-order reconstruction with the approximate solution uh and its L2-projections to lower-degrees

polynomial spaces. Then, for each candidate, we directly estimate the number of degrees of freedom necessary to achieve a

local tolerance for each element and propose a new (better) polynomial approximation degree and a new (better) element

size. Consequently, a new triangular grid is constructed.

Although we originally developed this technique for the discontinuous Galerkin method, it can be simply modified to

other types of finite element approximations including conforming finite elements, mixed finite elements, etc. Moreover,

since this approach is based on the reconstruction of the approximate solution, we can employ it for arbitrary (linear as

well as non-linear) boundary value problems. Finally, its extension to 3D problems is straightforward.

The outline of the paper is as follows: In Section 2, we introduce the governing equations and their discretization by

the discontinuous Galerkin method. In Section 3, we introduce the higher-order reconstruction technique and formulate the

saturation assumption. Its validity is numerically demonstrated in Section 4. The main novelty of this paper is presented in

Section 5, where we present the hp-adaptive strategy. In Section 6, we present three numerical examples that demonstrate

the performance and robustness of the proposed method.

2. Problem description

2.1. Governing equations

We consider the nonlinear convection–diffusion problem

∇ · f (u) − ∇ · (K(u)∇u) = g(x), (1a)

u|∂�D
= uD, (1b)

K(u)
∂u

∂n

∣∣∣
∂�N

= gN, (1c)

where u : � → R is an unknown scalar function defined on � ∈ R
2. We assume that � is polygonal for simplicity. Moreover,

f (u) = ( f1(u), f2(u)) : R → R
2 and K(u) = {Ki j(u)}2

i, j=1
: R → R

2×2 are nonlinear functions of their arguments, n is the unit

outer normal to ∂� and ∅ �= ∂�D ∪ ∂�N = ∂� are disjoint parts of the boundary of �. Symbols ∇ and ∇· mean the gradient

and divergence operators, respectively.

We assume that fs ∈ C1(R), fs(0) = 0, s = 1, 2, K is bounded and positively definite, g ∈ L2(�), uD is the trace of some

u∗ ∈ H1(�) ∩ L∞(�) on ∂�D and gN ∈ L2(∂�N). We use the standard notation for function spaces (see, e. g., [12]): Lp(�)

denote the Lebesgue spaces, Wk, p(�), Hk(�) = W k,2(�) are the Sobolev spaces and Pk(M) denotes the space of polynomial

functions of degree ≤ k defined on the domain M ⊂ R
2. Let us note that any function from Pk(M) can be interpreted as a

polynomial function defined on R
2 restricted to M. By φ|M we denote the restriction of a function φ on M.

In order to introduce the weak solution, we define the spaces

V := {v; v ∈ H1(�), v|∂�D
= 0}, W := {v; v ∈ H1(�), v − u∗ ∈ V}. (2)

We say that function u is the weak solution of (1), if the following conditions are satisfied

u ∈ W ∩ L∞(�), (3a)

∫
�

[∇ · f (u) v + (K(u)∇u) · ∇v] dx =
∫
�

gv dx +
∫
∂�N

gN v dS ∀v ∈ V. (3b)

The assumption u ∈ L∞(�) in (3) guarantees the boundedness of functions f(u) and K(u) and therefore the existence of

the integrals in (3a). This assumption can be weakened if functions f(u) and K(u) satisfy some growth conditions.

2.2. Discretization of the problem

Let Th (h > 0) be a partition of the closure � of the domain � into a finite number of triangles K with mutually disjoint

interiors. We call Th = {K}K∈Th
a triangulation of � and for simplicity, we assume that Th satisfies the conforming properties

from the finite element method, see, e.g, [13]. The diameter of K ∈ Th is denoted by hK.
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