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a b s t r a c t

In this paper, a meshless collocation method with barycentric rational interpolation is

proposed to find and represent the solution of the two-dimensional hyperbolic telegraph

equation. Barycentric rational interpolation functions are used for spatial variable and its

partial derivatives, which produce a system of second order ordinary differential equations

based on collocation method. The resulting system has been solved by central differential

scheme. The accuracy and efficiency of proposed approach are demonstrated by several

numerical experiments, where comparison is made with some earlier work. It is clear that

the proposed method produces good results in comparison with those available in liter-

ature. Moreover, CPU time taken in our computation is much less. It is proved that the

proposed method is very simple, fast and accurate.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In the present work, we consider the following second-order linear two-space dimensional hyperbolic telegraph

equation

utt (x, y, t) + 2αut (x, y, t) + β2u(x, y, t) = uxx(x, y, t) + uyy(x, y, t), (x, y, t) ∈ � × (0, T ] (1.1)

where � = [0, 1] × [0, 1] is the problem region and (0, T ] is the time interval. u is an unknown function of x, y and t . α,

β are the constant. For α > 0, β = 0, Eq. (1.1) represents a damped wave equation and for α > β > 0 is called telegraph

equation. The telegraph equation is an important equation of mathematics physics, which has been widely applied in many

different fields such as transmission and propagation of electrical signals [1], random walk theory [2], and mechanical sys-

tems [3], etc.

The initial conditions are given by,

u(x, y, 0) = ū(x, y), (x, y) ∈ � (1.2)

ut (x, y, 0) = v̄(x, y), (x, y) ∈ � (1.3)
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while the Dirichlet boundary conditions are given as{
u(0, y, t) = h1(y, t), (y, t) ∈ [0, 1] × [t > 0], u(1, y, t) = h2(y, t), (y, t) ∈ [0, 1] × [t > 0]
u(x, 0, t) = h3(x, t), (x, t) ∈ [0, 1] × [t > 0], u(x, 1, t) = h4(x, t), (x, t) ∈ [0, 1] × [t > 0]

, (1.4)

Neumann boundary conditions are given as{
ux(0, y, t) = g1(y, t), (y, t) ∈ [0, 1] × [t > 0], ux(1, y, t) = g2(y, t), (y, t) ∈ [0, 1] × [t > 0]
uy(x, 0, t) = g3(x, t), (x, t) ∈ [0, 1] × [t > 0], uy(x, 1, t) = g4(x, t), (x, t) ∈ [0, 1] × [t > 0]

(1.5)

where �u and �t are non-intersection curves such that �u ∪ �t = �, � is the closed curve bounding the region �.

Recently, increasing attention has been paid to the development, analysis, and implement of numerical solution for the

hyperbolic telegraph equations. Mohanty et al. [4,5] proposed unconditionally stable ADI schemes for two and three space

dimensional linear hyperbolic equations. Dehghan and Shokri [6] proposed a collocation scheme by using thin plate splines

radial basis function. In [7], Dehghan and Mohebbi developed a high order compact finite difference and collocation scheme.

In [8], two meshless methods were successfully applied for solving Eqs. (1.1)–(1.5). Author of [9] proposed the dual reci-

procity boundary integral equation method. Xie et al. [10] presented two and three-level compact difference and alternating

direction implicit schemes. In [11], the author studied a class of high accuracy scheme of 0(τ 4 + h2) and 0(τ 4 + h4) by using

non-polynomial parameters cubic spline in space direction and compact difference in time direction. Difference quadrature

method as a numerical discretization technique for the approximate of derivatives has been successfully applied to solve

various partial differential equations such as telegraph equations [12–15], reaction–diffusion Brusselator equation [18], sine-

Gordon equation [19] and hyperbolic equations [20,21]. A combination of boundary knot and analog equation method has

been proposed by Dehghan and Salhi [16] for Eq. (1.1). Heydari et al. [17] developed a new approach of the Chebyshev

wavelets method for solution of partial differential equations with boundary conditions of the telegraph type.

During the last two decades, meshless or meshfree methods have been developed and applied to solve partial differential

equations (PDE). More and more researchers are devoting themselves to the study of meshless method, due to the fact

that the construction of mesh is a tedious and difficult work in mesh-based method such as finite element method, finite

difference method and boundary element method, etc [22]. According to the approximation used in derivation of the discrete

mathematical models, the meshless methods can be largely categorized into two major groups, namely meshfree weak-

form methods, such as the element-free Galerkin (EFG) method [23,31], reproducing kernel particle (RKPM) method [24,25],

partition unity finite element (PUM) method [26], local radial point interpolation (LR-PIM) method [27], and meshfree local

Petrove–Galerkin (MLPG) [28–30], etc., and meshless strong-form method, such as smoothing particle hydrodynamics (SPH)

method [32], finite point method (FPM) [33], HP-meshless clouds method [34], and collocation method [35–38], etc. For the

former, the weak forms are used to derive a set of algebraic equations through a numerical integration process using a set of

integration domain that may be constructed globally or locally in the problem domain. The integration domain makes them

computationally expensive, and not truly meshless. In the latter, governing equations and equations for boundary conditions

are directly discretized at the scattered nodes to obtain a set of discretized system of equation by using the collocation

techniques. Advantages of collocation methods are simple to implement, computationally efficient, and without any mesh

for both field variable approximation and integration. Because of those advantages, meshless stong-form methods have been

widely applied in the analysis for problems of fluid mechanics [22]. However, meshless strong-form methods are often

unstable and less accurate, especially for the problems including Neumann boundary conditions. Some special techniques

are designed to enforce Neumann boundary conditions. So, additional efforts are necessary in developing novel strong-form

meshless method.

In most cases, the Lagrange approach is a choice for dealing with polynomial interpolations. The key is that the La-

grange polynomial must be manipulated through the formulas of barycentric interpolation [39]. The rational interpolation

sometimes gives better approximations than polynomial interpolation, especially for large sequences, but it is difficult to

control the poles. Happily, Float and Borman reported in [40] that there is in fact a whole family of barycentric rational

interpolations which have no poles and arbitrarily high approximation orders. The family includes construction of Berrut

[41] as a special case. The collocation method based on barycentric rational interpolation was recently extended to solve

various ordinary and partial differential equations including 1D high order initial and boundary values problems [42] and

non-linear Burgers’ equation [43]. In fact, there are few reports about the application of barycentric rational interpolation in

the literature, especially for the high dimensional problems. The interested reader can see [44–46].

This article presents a new numerical approach solving two-dimensional hyperbolic telegraph using the barycentric ra-

tional interpolation and collocation method. The advantages of proposed approach are very simple, fast and accurate. In

addition, the boundary conditions including Neumann boundary conditions and Dirichlet boundary conditions can be im-

plemented directly. The outline of the paper is as follows: In Section 2, the formula of two-dimensional barycentric rational

interpolation is derived. In Section 3, the meshless collocation scheme with barycentric rational interpolation is presented.

In Section 4, computational results for some test problems are illustrated and compared with some previous results and

finally conclusions are included in Section 5.
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