
Accelerating image boundary detection by hardware parallelism

Zhilei Chai ⇑, Xinglong Shao, Yuanpu Zhang, Wenmin Yang, Qin Wu
Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Department of Computer Science, Jiangnan University, Wuxi, Jiangsu Province 214122, China

a r t i c l e i n f o

Article history:
Available online 18 April 2014

Keywords:
Image boundary detection
Hardware acceleration
Parallel computing
Real-time performance
Field programmable gate arrays (FPGAs)

a b s t r a c t

Image boundary can provide useful information for high-level tasks in computer vision applications.
However, high-quality image boundary detection algorithms are computationally intensive, which limits
their applicability in real-world applications. In this paper, a study on accelerating algorithms of image
boundary detection by hardware parallelism is presented. The Pb (Probability boundary) algorithm, as
one representative high-quality algorithm of gradient-based boundary detection, is selected. Firstly, dif-
ferent types of parallelisms existing in Pb are analyzed. Then, suitable hardware structures to accelerate
Pb based on those parallelisms are discussed. Finally, time performance, accuracy and scalability of the
parallel Pb detector accelerated by hardware are presented. After being implemented in a Xilinx Vir-
tex-7 FPGA, XC7VX485T-2FFG1761C, the parallel Pb detector with the working frequency of 200 MHz
takes 6.3 ms to process an 321� 481 image. It is more competitive than Pb implemented on CPUs when
larger images are processed. This paper demonstrates a promising way to improve the real-time perfor-
mance of high-quality image boundary detection systems, especially when embedded and real-time
systems are taken into account.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Techniques of image boundary detection are widely used in
computer vision applications including image segmentation, object
recognition and classification etc. In contrast to an edge that is
often defined as an abrupt change in low-level image features such
as brightness or color, a boundary is a contour that represents a
change in pixel ownership from one object or surface to another
[1]. Boundary detection is thus a high-level technique based on
edge detection that provides more instructive information but
with higher computational cost. For instance, as a representative
gradient-based algorithm for high-quality boundary detection,
the Pb (Probability boundary) detector takes more than 1 min to
process a 321� 481 image when being executed on a 2.10 GHz
Pentium (R) dual-Core CPU T4300. That is why most real world
applications today still use simpler, less accurate boundary detec-
tion techniques rather than high quality techniques with high
computational complexity. For vision systems used in embedded
applications, the real-time performance is more critical because
those systems usually need to interact with real world. Thus, to
accelerate computation of boundary detection is vital for deploying
high-quality methods in real world applications.

Due to the fact that frequency scaling of processors becomes
more difficult, researchers today pay more attention to accelerate
computation by exploiting parallelisms fully through architectural
optimization. For instance, Bryan Catanzaro et al. [3] investigated
how to accelerate boundary detection by implementing it on par-
allel hardware of GPUs. The advantage of implementing boundary
detection algorithms on GPUs is high programmability. The disad-
vantage is that GPUs have to be cooperated with CPU and the sys-
tem based on GPUs has relatively higher power consumption. Thus,
more efficient approaches to accelerate boundary detection should
be investigated.

In this paper, a study on accelerating algorithm of Pb boundary
detection on an FPGA (Field Programmable Gate Arrays) platform
[4–6] is presented in order to exploit different types of parallelisms
fully. After being implemented in a Xilinx Virtex-7 FPGA,
XC7VX485T-2FFG1761C, the parallel Pb detector with the working
frequency of 200 MHz takes 6.3 ms to process an image of
321� 481, in contrast to 0.67 s on GPUs and 72.5 s on CPUs.

The main contribution of this work is summarized as follows:

� A comprehensive analysis of different types of parallelisms
existing in Pb including task parallelism, data parallelism and
pipeline parallelism is conducted. It provides a general
guidance for users to implement parallel boundary detection
systems.

http://dx.doi.org/10.1016/j.micpro.2014.03.011
0141-9331/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: zlchai@jiangnan.edu.cn (Z. Chai), qinwu@jiangnan.edu.cn

(Q. Wu).

Microprocessors and Microsystems 38 (2014) 458–469

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2014.03.011&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2014.03.011
mailto:zlchai@jiangnan.edu.cn
mailto:qinwu@jiangnan.edu.cn
http://dx.doi.org/10.1016/j.micpro.2014.03.011
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


� A representative gradient-based algorithm for high-quality
boundary detection is implemented in FPGA, and its scalability,
usability are discussed. Because this algorithm includes many
fundamental modules used in gradient-based boundary detec-
tion methods, this study could provide a foundation for other
gradient-based boundary detection algorithms to be acceler-
ated by hardware.
� Through presenting the acceleration effect by implementing Pb

in FPGA, this paper demonstrates a promising way to improve
the real-time performance of high-quality image boundary
detection systems.

The rest of the paper is organized as follows. Section 2 intro-
duces related work on boundary detection algorithms and their
acceleration. Section 3 gives an general overview of gradient-based
boundary detection methods. Section 4 introduces processes of the
Pb algorithm in more detail. Section 5 analyzes parallelisms exist-
ing in Pb at different types and levels. Section 6 introduces the
hardware design and corresponding experiments for the parallel
Pb detector. Section 7 shows overall experimental results and dis-
cusses time performance, accuracy and scalability of the hardware-
accelerated Pb detection system. Section 8 concludes the paper.

2. Related work

Although there are different edge/boundary detection tech-
niques [1,7,8,15,16], recent development of the gradient-based
technique [1,15] makes it more compelling. In this section, related
work on algorithm investigation of gradient-based boundary
detection is introduced first. Then, efforts related to computing
acceleration for gradient-based boundary detection are introduced.

2.1. Gradient-based boundary detection algorithms

A variety of edge detectors were developed based on image gra-
dient or Gaussian derivative filters, such as the popular Canny edge
detector [9] that is still used today. For gradient-based methods,
the brightness-only model cannot detect texture boundaries well.
Thus, it is a trend to combine changes of multiple features, such
as brightness, color, and texture, together to improve boundary
detection effect.

Martin et al. [1] presented an algorithm that uses multiple cues
of brightness, color, and texture respectively to detect natural
image boundaries. It checks each pixel for local discontinuities in
different feature channels. For instance, brightness gradient (BG),
color gradient (CG), and texture gradient (TG) are taken into
account simultaneously. For each feature channel, gradient infor-
mation of multiple orientations is considered further for the dis-
continuity. After combining different cues together and using
some optimization technique, the pixel with certain probability
to be the boundary is selected as a boundary pixel. Thus, the algo-
rithm is called Pb (i.e., Probability boundary) algorithm.

Dollar et al. [10] proposed a supervised learning algorithm for
edge and object boundary detection, referred to as boosted edge
learning (BEL). The decision of an edge point is made indepen-
dently at each location of the image. A very large aperture is used
to provide significant context for decision. During the learning
stage, the algorithm selects and combines a large number of fea-
tures across different scales, in order to learn a discriminative
model using an extended version of the probabilistic boosting tree
classification algorithm. The learning-based framework is highly
adaptive and there is no parameter need to tune.

Through an empirical study, Ren et al. [11] demonstrated
multi-scale schemes to improve boundary detection results on
large datasets of natural images. It utilized local boundary cues

including contrast, localization and relative contrast, and trained
a classifier to integrate them across multiple scales. The approach
successfully combined strength from both large-scale detection
(robust but poor localization) and small-scale detection (detail-
preserving but sensitive to clutter) together.

M. Maire et al. [15] developed a new high-quality boundary
detector using a combination of both local and global cues, called
gPb (i.e., global probability boundary). It detects and localizes can-
didate junctions, takes into account both boundary salience and
geometric configuration. As measured by the Berkeley segmenta-
tion dataset [24], the gPb detector is the highest quality detector
for natural image boundary detection to date. Notably, gPb is based
on Pb but its global processing is not so well suited to be paralle-
lised as that of local. So in this paper, Pb is selected for acceleration
to provide a common foundation for hardware acceleration of
gradient-based boundary detection algorithms.

2.2. Computing acceleration of image boundary detection

As mentioned above, the boundary detection algorithm with
better detection results means more information being taken into
account and higher computational cost. Thus, the real-time perfor-
mance is increasingly becoming a critical factor for high quality
boundary detection techniques when being used in real applica-
tions. In order to deal with this issue, Ray Hidayat et al. [2] intro-
duced a real-time texture boundary detector, running on an Intel
Core 2 Duo 2.66 GHz CPU. When image resolution is 320� 240,
43.29 fps can be processed in time. Please note that only texture
is considered in their experiment, brightness and color are not
included. Due to the sequential model of computation and the con-
straint of frequency increasing, CPUs are difficult to accelerate
advanced boundary detection algorithms further.

Catanzaro et al. [3] optimized and implemented gPb/Pb on Nvidia
GPUs for higher processing speed. The computational time of the
boundary detection was decreased from 236.4 s per frame on gen-
eral purpose CPUs to 1.822 s on Nvidia GPUs for images with the size
of 321� 481. Furthermore, the original gradient computation of
gPb/Pb was replaced by a simpler method in their implementation.

To our knowledge, there is few work focusing on optimizing
high-quality boundary detection algorithms on FPGAs. Only imple-
mentations of simple edge detectors or fundamental modules used
in boundary detection on FPGAs were introduced [12–14,20,26–
28]. In this paper, Pb is selected as a representative to be optimized
on FPGAs in order to study key techniques for accelerating high-
quality boundary detection algorithms based on hardware
parallelism.

3. An overview of gradient-based image boundary detection
algorithms

As shown in Fig. 1, although lots of different gradient-based
boundary detection algorithms exist, they are generally composed
of the following steps as options.

� Color space conversion. To convert color space from RGB to Lab,
Gray-scale or others.
� Gradient computation. To compute necessary gradient informa-

tion from different image features such as brightness, color
(sometimes multiple channels), texture or others.
� Cue combination. Use techniques such as logistic regression to

combine cues computed from different features together on
multiple orientations or scales.
� Global cue computation. Use techniques such as normalized

cuts to obtain global information of cues based on combined
local cues.

Z. Chai et al. / Microprocessors and Microsystems 38 (2014) 458–469 459



Download English Version:

https://daneshyari.com/en/article/462594

Download Persian Version:

https://daneshyari.com/article/462594

Daneshyari.com

https://daneshyari.com/en/article/462594
https://daneshyari.com/article/462594
https://daneshyari.com

