Microprocessors and Microsystems 38 (2014) 485-495

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Contents lists available at ScienceDirect

EMBEDDED
HARDWARE
DESIGN

Register swapping schemes for low power execution

@ CrossMark

Po-Yueh Chen *, Chiung-Hsien Jen

Department of Computer Science and Information Engineering, National Changhua University of Education, Taiwan

ARTICLE INFO

ABSTRACT

Article history:
Available online 11 March 2014

Keywords:

Instruction bus

Low power

Greedy algorithm
Dynamic programming

For embedded systems, the power dissipation on buses has become an essential issue in recent years.
Many real-time embedded processors, such as DSP processors, adopt the Harvard architecture in which
the data and instruction buses are separated to avoid processing-speed degradation. The power dissipa-
tion on an instruction bus can be reduced if the switching activities between consecutive instructions on
that bus are reduced. Two efficient algorithms, the greedy method and the dynamic programming based
method, are proposed to swap commutative source register fields of adjacent instructions. The switching
activities on the instruction bus are therefore reduced, without affecting the execution results. Experi-
mental results show that the proposed schemes result in a reduction of as much as 21.43% in the switch-
ing activities of consecutive source register fields between commutative blocks. In addition, the proposed
schemes can be conveniently integrated with other encoding schemes to further improve the power dis-

sipation on an instruction bus.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, various digital products significantly enhance
human life. A variety of inexpensive digital products are imple-
mented because of the rapid development of integrated circuits
(ICs). From small-scale integration (SSI) to very large-scale integra-
tion (VLSI), the decreasing of chip area makes it feasible to inte-
grate more functions on a single electronic product.

However, due to the increasing clock frequency and circuit inte-
gration on a chip, the power dissipation becomes substantial [1]. It
results in enormous heat dissipation which decreases the perfor-
mance and stability of a circuit. In order to have a well-operating
system, many schemes on low power design have been proposed
in recent years. On the other hand, portable electronic devices such
as mobile phones, PDAs, digital cameras, and notebooks become
globally widespread. Applying these devices, consumers always
have a critical demand for their battery life, which can be extended
by adopting appropriate low power schemes on the target sys-
tems/chips [2].

Another reason for low power design comes from environmen-
tal concerns. Energy consumption induces the emission of carbon
dioxide (CO;), a greenhouse gas (GHG) resulting in global warming.
Therefore, many low power policies/programs, such as the Energy
Star program [3], have been brought into action around the world.

* Corresponding author.
E-mail address: pychen@cc.ncue.edu.tw (P.-Y. Chen).

http://dx.doi.org/10.1016/j.micpro.2014.03.001
0141-9331/© 2014 Elsevier B.V. All rights reserved.

To a certain extent, low power designs benefit both energy conser-
vation and carbon reduction.

In most CMOS circuits, the power dissipation can be categorized
into two components: static power and dynamic power. The static
power results from the leakage current. Although the CMOS
leakage loss is negligible for older technologies, it increases and
become respectable as the process dimension decreases [4]. The
dynamic power consists of the short-circuit power and the
switching power. The former comes from the short circuit currents
that arise when pairs of PMOS/NMOS transistors are conducting
simultaneously. The latter is due to the charging and discharging
of the load capacitance driven by a circuit. It can be modeled as
the following equation:

1
Pswitching = jcloud : V12)D f : ESW (1)

where Cj,qq denotes the load capacitance, Vpp is the supply voltage,
fis the clock frequency, and Esy represents the switching activity.
The switching activity is defined as the number of gates which
make a logic transition within one clock cycle [5]. For older technol-
ogies, the switching power dominates the total power in a CMOS
circuit. For instance, the switching power accounts for 80% of the
overall power in 0.35 pum process [6]. Therefore, compared with
other types of power dissipation, the switching power is a critical
issue.

For systems/chips with buses, the total power dissipation is
dominated by the power dissipation on busses [7]. In general, a
bus consists of an address bus and a data bus. Because of the nature


http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2014.03.001&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2014.03.001
mailto:pychen@cc.ncue.edu.tw
http://dx.doi.org/10.1016/j.micpro.2014.03.001
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro

486 P.-Y. Chen, C.-H. Jen/Microprocessors and Microsystems 38 (2014) 485-495

of program execution, the addresses are normally sequential,
whereas the data transferred via data bus relatively have higher
randomness. In [8-10], various techniques are proposed to reduce
the dynamic power dissipation on address buses. On the other
hand, due to the randomness of data, it is a great challenge to re-
duce the power dissipation on data buses.

Many real-time systems such as DSP processors adopt the Har-
vard architecture [11], in which the data bus and the instruction
bus are separated to avoid processing-speed degradation. Fig. 1
illustrates the structure of the Harvard architecture. Compared to
the Von Neumann architecture [12], in which programs and data
are sharing a common memory and therefore one instruction exe-
cution requires several cycles, the Harvard architecture allows
users to access instruction and data the same time. Furthermore,
it also allows different sizes for the data and instruction memory
modules. Because the instruction and data memory modules are
independent, two busses (an instruction bus and a data bus) are
employed by the Harvard architecture. In this paper, exploiting
the symmetry of some instructions, we effectively reduce the
power dissipation on the instruction buses in the Harvard
architecture.

The remainder of this paper is organized as follows. In Section 2,
we briefly review various techniques for reducing the power dissi-
pation on instruction buses. Section 3 formally defines the problem
for swapping source register fields and proposes two efficient algo-
rithms accordingly. In Section 4, experimental results are pre-
sented. The integration of the proposed schemes and another
encoding scheme is described and evaluated as well. Finally, the
conclusions are summarized in Section 5.

2. Literature review

The techniques for reducing the power dissipation on instruc-
tion buses can be mainly categorize into two classes: hardware-
oriented and software-oriented. The former utilizes a codec, and
even extra bus lines if necessary, at both ends of a bus. Without
altering the hardware architecture, the later modifies the compiled
codes to reduce the switching activities during execution.

2.1. Hardware-oriented techniques

The bus-invert code [13] utilizes an extra control line to invert
the data transmitted over a bus. It guarantees that the Hamming
distance of two consecutive data does not exceed one half of the
bus width. If the data transmitted over a bus is uniformly distrib-
uted, the bus-invert code is a simple yet efficient approach for
reduction of switching activity.

In application-specific systems, the real bus data are actually
not uniformly distributed. The partial bus-invert code [14] selects
some of the bus lines as a sub-bus, and applies the bus-invert code
on them whereas the remaining lines are not coded. The advantage
of the partial bus-invert code is that unnecessary inversion of inac-
tive/uncorrelated bus lines is eliminated and therefore the codec
areas are reduced. Moreover, [14] also proposed the multi-way
partial bus-invert coding which divides a bus into some groups
where each group has its own invert control line.

Instructions Data
Program Data

Memory CPU Memory
Address

Address

Fig. 1. The Harvard architecture.

The effect of multi-way partial bus-invert coding depends on
the correlation between bits across groups. It is therefore not suit-
able for instruction streams. To improve the effect of partial bus-
invert coding on instruction buses, Gu and Guo [15] proposed the
segmental bus-invert coding, which divides an instruction into
groups based on instruction fields.

Encoding for opcodes [16] can cut down the switching activities
of opcodes in consecutive instructions during program execution.
It decreases not only the power dissipation on instruction registers
but also that on instruction buses.

In [17], the authors presented a low power framework for
instruction bus encoding, in which programs are transformed after
the phase of compilation. The power dissipation on an instruction
bus is reduced accordingly. However, an extra decoder is required
for program execution.

2.2. Software-oriented techniques

Petrov and Orailoglu [18] proposed a technique called register
name adjustment, which renames the registers’ indices to reduce
bit transitions of instruction streams. For low power execution,
Lee et al. [19] explored compiler transformation techniques to
the problem of scheduling very long instruction word (VLIW)
instructions. Similarly, Chabini and Wolf [20] achieved low power
dissipation on instruction buses by reordering the instructions in
basic blocks of target programs. In the study, the authors formu-
lated the problem of reordering instructions as an integer linear
programming problem and introduced two heuristic algorithms
accordingly.

In next section, we will describe a problem of swapping source
register names and propose two algorithms for the problem. With-
out any extra codec, the simple yet efficient algorithms preliminar-
ily modify the target program and effectively reduce the
corresponding bit transitions on the instruction bus.

3. The proposed methods

Commutative operations include addition, multiplication, and
all logic operations. More specifically, a commutative operation
produces the same result regardless of the order of its operands.
While encountering a commutative operation, we can swap the
source register fields in the instruction format to reduce the
switching activities on an instruction bus. In the following, these
instructions are referred as commutative instructions for conve-
nience. An instruction is called non-commutative if it is not
commutative.

3.1. Problem description

As shown in Fig. 2, assume that there are n+2 consecutive
instructions I, I, I, ..., I, In+1 where Iy, I, ..., and I,, are commu-
tative instructions, whereas Iy and I,,.; are non-commutative ones.

non-commutative instruction Lo
I

commutative instructions

non-commutative instruction L

Fig. 2. A commutative block.



Download English Version:

https://daneshyari.com/en/article/462596

Download Persian Version:

https://daneshyari.com/article/462596

Daneshyari.com


https://daneshyari.com/en/article/462596
https://daneshyari.com/article/462596
https://daneshyari.com

