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a b s t r a c t

This paper concerns the process of computing the underlying function of a given set of data

points. In many cases, it is not possible to obtain an analytical solution for this problem so

the goal is transformed into that of computing a meta-model instead. In this paper we seek to

compute a smooth meta-model of such points based on local-support free-form parametric

curves. Given an initial parameterization, our method applies a particle-based metaheuris-

tic approach to determine optimal values for the breakpoints and poles of the fitting curve,

which is well-known to be a continuous nonlinear optimization problem. The performance of

our approach is evaluated by its application to two illustrative examples: a synthetic academic

shape and a real-world shape. Our experimental results show that the proposed scheme per-

forms very well, even for shapes with underlying functions exhibiting challenging features,

such as self-intersections and sharp changes of curvature. Comparative results show that our

approach outperforms previous approaches in terms of generality and fitting error accuracy.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation

Many industrial and engineering processes require performing parametric learning in order to obtain the underlying function

of data. Very often, the mathematical structure of such a function cannot be readily obtained from data, so the problem is

transformed into that of obtaining a meta-model, i.e., a model that mimics the behavior of the actual function but it is somehow

computational cheaper to analyze and manipulate. A classical example arises in Reverse Engineering, where we seek to obtain a

digitsal model of the surface of an already existing physical object [1,2]. A common approach in this field is to obtain a cloud of

data points from the physical object by using a 3D laser scanner or other digitizing devices (coordinate measuring machines, CT

scanners, light digitizers). This is a typical procedure in many applied and industrial fields, such as computer graphics, computer

animation, virtual reality, computer-aided design and manufacturing (CAD/CAM), shoes industry, archeology (reconstruction of

archeological assets), and in many other fields. Data can also be acquired from direct real measurements on a workpiece, as

it typically happens in the construction of car bodies, ship hulls, airplane fuselage and other free-form objects [1,3–9]. Other
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example comes from medical imaging, where inner organs of our body are analyzed through a series of images acquired by

computer tomography or magnetic resonance. Then, digital geometry processing is applied to generate a fully 3D volumetric

image of the organ for diagnostic and therapeutic purposes. A similar approach is also taken in many areas of industry for

internal inspection and analysis of physical components of a workpiece.

A common factor of all these instances is their huge number of data, typically ranging from thousands to millions of data

points assumed to lie on an unknown curve or surface. Unfortunately, in most cases we have no information about these geo-

metric entities beyond their data points. As a consequence, it is very difficult to figure out the mathematical structure of such

curves or surfaces and we are forced to replace them by meta-models via data fitting according to some prescribed criteria. Of

course, such meta-models must be precise enough to represent the available information with high accuracy so that the user

can perform typical engineering operations such as design optimization, system simulation, instrumentation and measurement,

control engineering, quality assessment, life testing, and many others. In general, two approaches are usually taken: interpola-

tion (where the curve/surface is constrained to pass through all input data points) and approximation (where the curve/surface is

expected to pass near the data points). In industrial applications, approximation is preferred over interpolation because typically

real-world data are irregularly sampled and strongly affected by noise, making interpolation both impractical and unnecessary.

This is also the approach taken in this paper. In particular, we focus on the case of data fitting with parametric curves, as described

in next section.

1.2. Meta-model representation

Approximation meta-models for data fitting with curves can be classified into three groups regarding its mathematical struc-

ture: explicit, implicit and parametric. In explicit representation, the dependent variables are “explicitly” expressed as functions

of the independent variables, with each type of variables placed on different sides of the equation. For instance, explicit planar

curves are given by the expression: y = f (x). On the contrary, in implicit representation we have a function containing both vari-

ables in the form F (x, y) = 0. The curve is then formed by all pairs (x, y) satisfying this implicit relationship. This representation

is more general than the explicit one: all explicit functions can be transformed into implicit ones (just take F (x, y) = y − f (x) in

our example) but the opposite is not always true. In particular, an implicit function can represent curves with multiple branches,

self-intersections or loops, while an explicit function cannot.

The parametric representation is the most common in commercial software and industrial fields. In that representation, each

coordinate variable is independently represented as a function of a parameter (say t) such as {x = f (t), y = g(t)} for planar

curves. This representation allows a quick computation of the coordinates of all points on a curve. It is also useful to define a

curve segment constraining the parameter to intervals [10]. This is an interesting feature because curves are usually bounded in

real-world settings. Finally, parametric curves are very flexible, since variables x and y are fully independent of each other. As

a result, they are able to represent a broad variety of shapes. This feature is particularly noticeable for the so-called free-form

parametric functions, such as Bézier, B-splines and NURBS. Free-form curves are based on poles (also called control points) which

are connected by linear segments to form a control polygon that roughly determine the shape of the curve. Instead of being

described by polynomial equations, free-form curves are typically encoded in terms of their poles, and the degree (alternatively,

the order) of the curve. Generally, this description leads to a polynomial equation obtained as a linear combination of basis

functions with the coefficients being the poles.

Free-form curves can be of two types. First type corresponds to global-support curves, when the basis functions are defined

over the whole curve domain. As a result, they exhibit global control: moving a pole modifies the entire curve. Second type

corresponds to local-support curves: their basis functions are defined on a subset (usually, a bounded interval) of the whole

domain, so they exhibit local control: only a portion of the curve is affected by pole movement. Since local control is better

suited for interactive design and manipulation, local-support approaches (driven by piecewise functions, such as B-splines and

NURBS) have become prevalent in CAD/CAM and computer graphics. In this paper we focus on smooth local-support free-form

curves, particularly B-splines.

In spite of their popularity and their broad range of applications, using B-splines is still challenging because they depend

on many different continuous variables (data parameters, breakpoints, and poles) in a difficult nonlinear and interrelated way

[11–15]. For instance, the computation of breakpoints requires a previous parameterization which, at its turn, requires previous

breakpoint determination, and so on [16,17]. Mathematically, this implies that the fitting problem cannot be partitioned into

independent sub-problems for the different sets of variables [18–21]. A classical way to overcome this limitation is to make a

choice of values for some of those variables and compute the values of all the others. Classical choices are uniform, chordal,

and centripetal methods for data parameterization [17]. Then, breakpoints can be computed by using either the uniform or the

averaging methods. But these methods are far from being optimal in many situations, as they do not fully reflect the structure

of data [22]. Furthermore, in general there is no analytical solution to the problem of computing the breakpoints from a given

parameterization and the data points [14,23] and, therefore, we must rely on numerical procedures instead. The typical approach

is to formulate the problem as a continuous nonlinear optimization problem [22,24]. Unfortunately, the traditional numerical

optimization techniques are not enough to solve this problem. Among the alternatives suggested in the literature, those based

on artificial intelligence techniques are receiving increasing attention during the last few years (see our discussion in Section 2).

However, the solutions reported so far are partial and applicable only to some particular cases. More recently, the scientists and

engineers have turned their attention to bio-inspired computation, a field where the interplay between nature and computers

has led to improved schemes to solve many problems in mathematics and computer science, including difficult optimization
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