Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Some orders for operators on Hilbert spaces

Dijana Mosić, Dragana S. Cvetković-Ilić*

Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, Niš 18000, Serbia

ARTICLE INFO

ABSTRACT

In this paper we present some interesting properties of the diamond, (left, right) star and sharp orders for operators on Hilbert spaces.

© 2015 Elsevier Inc. All rights reserved.

Diamond order Minus partial order Star partial order Sharp partial order Group inverse Moore–Penrose inverse

MSC:

15A09

47A05

47A99 Keywords:

1. Introduction and notations

Throughout the paper \mathcal{H} , \mathcal{K} and \mathcal{F} will denote Hilbert spaces. By $\mathcal{B}(\mathcal{H}, \mathcal{K})$ we denote the set of all bounded linear operators from \mathcal{H} to \mathcal{K} . Set $\mathcal{B}(\mathcal{H}) = \mathcal{B}(\mathcal{H}, \mathcal{H})$. For an operator $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$, the symbols $\mathcal{N}(A)$, $\mathcal{R}(A)$ and *rank*(A), respectively, will denote the null space, the range and the dimension of the range of A. The set of all $n \times n$ matrices will be denoted by M_n .

By $x \otimes y^*$ we denote a rank one operator defined by $(x \otimes y^*)(t) = (t, y)x$. Notice that any rank one operator can be represented in this form for some $x, y \in \mathcal{H}$. The span of vectors $\{x, y, \ldots w\}$ will be denoted by $\mathcal{L}\{x, y, \ldots w\}$. For a closed subspaces X of \mathcal{H} we use the symbol P_X to denote the orthogonal projection onto X.

If $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ and there exists some $C \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that ACA = A, we say that C is an inner generalized inverse of A and call the operator A relatively regular (regular). It is well known that A is relatively regular if and only if $\mathcal{R}(A)$ is closed in \mathcal{K} . By $\mathcal{B}_{reg}(\mathcal{H}, \mathcal{K})$ we denote the set of all relatively regular operators from $\mathcal{B}(\mathcal{H}, \mathcal{K})$. The regularity of an operator A is equivalent with the existence of the Moore–Penrose inverse of A. Recall that the Moore–Penrose inverse of $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ (if it exists) is the unique operator $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ satisfying the following:

(1)
$$AXA = A$$
 (2) $XAX = X$ (3) $(AX)^* = AX$ (4) $(XA)^* = XA$. (1)

It is denoted by A^{\dagger} . It is well-known that A^{\dagger} exists for a given A if and only if A is a relatively regular operator. For $A \in \mathcal{B}(\mathcal{H})$, the group inverse of A (if it exists) is the unique operator $A^{\#} \in \mathcal{B}(\mathcal{H})$ such that

$$AA^{\#}A = A, A^{\#}AA^{\#} = A^{\#}, AA^{\#} = A^{\#}A.$$

 $A \in \mathcal{B}(\mathcal{H})$ has the group inverse if and only if the Drazin index $ind(A) \leq 1$. In that case we say that A is group invertible. Some specific characterization of the group invertible elements from $\mathcal{B}(\mathcal{H})$ can be found in [5,12].

* Corresponding author. Tel.: +38 1638240837.

http://dx.doi.org/10.1016/j.amc.2015.11.059 0096-3003/© 2015 Elsevier Inc. All rights reserved.

霐

(2)

E-mail addresses: dijana@pmf.ni.ac.rs (D. Mosić), dragana@pmf.ni.ac.rs, gagamaka@ptt.rs (D.S. Cvetković-Ilić).

The core inverse on the set of all matrices of index one and core partial order were recently introduced by Baksalary and Trenkler [2]:

Definition 1.1. A matrix $A^{\oplus} \in \mathbb{C}^{n \times n}$ is a core inverse of $A \in \mathbb{C}^{n \times n}$ if $AA^{\oplus} = P_{\mathcal{R}(A)}$ and $\mathcal{R}(A^{\oplus}) \subseteq \mathcal{R}(A)$.

A generalization of this inverse to the algebra of bounded linear operators on a Hilbert space is the following:

Definition 1.2. For $A \in \mathcal{B}(\mathcal{H})$, an operator $A^{\oplus} \in \mathcal{B}(\mathcal{H})$ is a core inverse of A if

 $AA^{\oplus}A = A, \ \mathcal{R}(A^{\oplus}) = \mathcal{R}(A), \ \mathcal{N}(A^{\oplus}) = \mathcal{N}(A^*).$

The core inverse of A exists if and only if $ind(A) \le 1$. For more details concerning generalized inverses see [3,16].

2. Preliminaries

The next result of Douglas [9] will be frequently used in the paper:

Theorem 2.1. Let $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ and $B \in \mathcal{B}(\mathcal{F}, \mathcal{K})$. The following conditions are equivalent:

- 1. $\mathcal{R}(B) \subseteq \mathcal{R}(A)$.
- 2. There is a positive number λ such that $BB^* \leq \lambda AA^*$.
- 3. There exists $C \in \mathcal{B}(\mathcal{F}, \mathcal{H})$ such that AC = B.

Let $B \in \mathcal{B}_{reg}(\mathcal{H})$ be arbitrary. Without loss of generality, we can suppose that B has the following matrix representation with respect to the orthogonal decomposition $\mathcal{H} = \mathcal{R}(B) \oplus \mathcal{N}(B^*)$:

$$B = \begin{bmatrix} B_1 & B_2 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} R(B) \\ N(B^*) \end{bmatrix} \to \begin{bmatrix} R(B) \\ N(B^*) \end{bmatrix}.$$
(3)

Denote by $B' = [B_1 \ B_2] : [\mathcal{R}(B)_{\mathcal{N}(B^*)}] \to \mathcal{R}(B)$. Since $\mathcal{R}(B)$ is closed and $\mathcal{R}(B) = \mathcal{R}(B')$, we have that B' is right invertible. This implies that, $D = B'(B')^* = B_1B_1^* + B_2B_2^* \in \mathcal{B}(\mathcal{R}(B))$ is an invertible operator. Using formula $B^{\dagger} = B^*(BB^{\dagger})^*$ and invertibility of D, we have that

$$B^{\dagger} = \begin{bmatrix} B_1^* D^{-1} & 0 \\ B_2^* D^{-1} & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(B) \\ \mathcal{N}(B^*) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(B) \\ \mathcal{N}(B^*) \end{bmatrix}.$$
(4)

If $ind(B) \leq 1$, by the elementary observation we can conclude that B_1 is invertible and

$$B^{\#} = \begin{bmatrix} B_1^{-1} & (B_1^{-1})^2 B_2 \\ 0 & 0 \end{bmatrix}.$$
 (5)

Also, when $ind(B) \leq 1$ using formula $B^{\oplus} = B^{\#}BB^{\dagger}$, we get that the core inverse of B is given by

$$B^{\oplus} = \begin{bmatrix} B_1^{-1} & 0\\ 0 & 0 \end{bmatrix}. \tag{6}$$

In the following lemma we will give a representation for the Moore–Penrose inverse of $A \in \mathcal{B}_{reg}(\mathcal{H})$ given by

$$A = \begin{bmatrix} TB_1 & TB_2 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(B) \\ \mathcal{N}(B^*) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(B) \\ \mathcal{N}(B^*) \end{bmatrix},$$
(7)

where $B \in \mathcal{B}_{reg}(\mathcal{H})$ is given by (3) and $T \in \mathcal{B}(\mathcal{R}(B))$.

Lemma 2.1. Let $B, A \in \mathcal{B}_{reg}(\mathcal{H})$ be given by (3) and (7), respectively for some $T \in \mathcal{B}(\mathcal{R}(B))$. The Moore–Penrose inverse of A has the form

$$A^{\dagger} = \begin{bmatrix} B_1^* T^* (TDT^*)^{\dagger} & 0\\ B_2^* T^* (TDT^*)^{\dagger} & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(B)\\ \mathcal{N}(B^*) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(B)\\ \mathcal{N}(B^*) \end{bmatrix},$$
(8)

where $D = B_1 B_1^* + B_2 B_2^* \in \mathcal{B}(\mathcal{R}(B))$

Proof. Since

$$AA^* = \begin{bmatrix} TDT^* & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(B) \\ \mathcal{N}(B^*) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(B) \\ \mathcal{N}(B^*) \end{bmatrix},$$

using formula $A^{\dagger} = A^* (AA^*)^{\dagger}$, we get that A^{\dagger} is of the form (8). Notice that regularity of operator A implies (more precisely is equivalent) with the regularity of AA^* which is in turn equivalent with the regularity of TDT^* . \Box

Download English Version:

https://daneshyari.com/en/article/4625965

Download Persian Version:

https://daneshyari.com/article/4625965

Daneshyari.com