
A transparent and adaptive reconfigurable system

Antonio Carlos Schneider Beck a,⇑, Mateus Beck Rutzig b, Luigi Carro a

a Universidade Federal do Rio Grande do Sul, Instituto de Informática, Porto Alegre, RS, Brazil
b Universidade Federal de Santa Maria, Departamento de Eletrônica e Computação, Santa Maria, RS, Brazil

a r t i c l e i n f o

Article history:
Available online 20 March 2014

Keywords:
Computer architecture
Reconfigurable architectures

a b s t r a c t

In the current scenario, where computer systems are characterized by a high diversity of applications
coexisting in a single device, and with the stagnation in frequency scaling because of the excessive power
dissipation, reconfigurable systems have already proven to be very effective. However, they all present
two major drawbacks, which are addressed by this work: lack of transparency (the need for special tools
or compilers that changes the original code) and no ability to adapt to applications with different behav-
iors and characteristics, so significant gains are achieved only in very specific data stream oriented appli-
cations. Therefore, this work proposes the Dynamic Instruction Merging (DIM), a Binary Translation
mechanism responsible for transforming sequences of instructions into a coarse-grained array configura-
tion at run-time, in a totally transparent process, with support to speculative execution. The proposed
system does not impose any kind of modification to the source or binary codes, so full binary compati-
bility is maintained. Moreover, it can optimize any application, even those that do not present specific
kernels for optimization. DIM presents, on average, 2.7 times of performance gains and 2.35 times of
energy savings over a MIPS processor, and a higher IPC than an out-of-order superscalar processor,
running the MIBench benchmark set.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The increasing complexity of processors was driven by a con-
stant reduction in the size of transistors, and has been pushing per-
formance to higher levels. However, because of physical limits of
silicon [1,2], Moore’s Law, as known today, will no longer exist in
the near future. Moreover, according to the ITRS roadmap [3], alter-
native technologies that will completely or partially replace silicon,
either have a higher density, but are slower than traditional scaled
CMOS; or they will be faster, but with a huge area and power over-
head. Additionally, high performance architectures, such as the
superscalar processors, are reaching some well-known limits of
the ILP [4,7], and hence one faces serious problems when it comes
to increasing the IPC rate [5,6]. Therefore, the stagnation in fre-
quency scaling, excessive power dissipation and higher hardware
costs to ILP exploitation, together with the foreseen technologies,
are new architectural challenges to be dealt with.

In this scenario, reconfigurable architectures appear to be an
attractive solution. By using the combinational logic available in

reconfigurable systems to execute sequences of code more effi-
ciently, it is possible to obtain huge performance gains with energy
savings [33], at the price of extra area – exactly the only resource
available nowadays and in future technologies. Besides exploring
the ILP of the applications, reconfigurable systems can also speed
up sequences of data dependent instructions, which is their main
advantage when one compares to traditional processor architec-
tures. Moreover, they are highly based on regular circuits, which
beneficially affects the yield and diminishes costs, considering that
as the more transistor size shrinks, the harder it will be to print the
geometries employed today [8].

However, reconfigurable systems have two main drawbacks.
The first one is that they are designed to handle very data intensive
or streaming workloads. This means that the main design strategy
is to consider the target applications as having very few computa-
tionally intensive kernels to be optimized, which narrows their
field of application. Therefore, they are not able to fulfill the
requirements of current desktop or embedded systems, since they
must execute a large number of applications concurrently, with
different behaviors and needs.

The second problem with reconfigurable computing is that the
process of mapping chunks of code to reconfigurable logic usually
involves some kind of transformation, which can be manual or
automatic (by using special languages or tool chains). These

http://dx.doi.org/10.1016/j.micpro.2014.03.004
0141-9331/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Address: Universidade Federal do Rio Grande do Sul,
Instituto de Informática, Av. Bento Gonçalves, 9500, Campus do Vale, Bloco IV, Caixa
Postal 15064, Bairro Agronomia, Porto Alegre 91501-970, RS, Brazil. Tel.: +55 (51)
3308 6804.

E-mail address: caco@inf.ufrgs.br (A.C.S. Beck).

Microprocessors and Microsystems 38 (2014) 509–524

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2014.03.004&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2014.03.004
mailto:caco@inf.ufrgs.br
http://dx.doi.org/10.1016/j.micpro.2014.03.004
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


transformations modify the source or binary code. However, as In-
tel and ARM have been showing with their families of ISAs
(Instruction Set Architecture), binary compatibility between gener-
ations of processors is mandatory, so it is possible to reuse legacy
code and to maintain traditional programming paradigms.

Based on the aforementioned discussion, this work proposes a
new reconfigurable system, composed of a reconfigurable unit
and a special Binary Translation (BT) mechanism implemented in
hardware. The BT method is called Dynamic Instruction Merging
(DIM). It is used to detect and transform sequences of instructions
to be executed on the reconfigurable unit at run time, in a totally
transparent process. Therefore, there is no need for changing the
code at all, which ensures binary compatibility, making possible
the use of the reconfigurable hardware without requiring any tools
or special compilers for the hardware/software partitioning.

The reconfigurable unit is a coarse-grained array, composed of
simple functional units and multiplexers. The coarse grained nat-
ure facilitates the translation process by the DIM and saves mem-
ory space, in opposite to the complexity found in fine-grained
configurations. Therefore, the proposed system is capable of adapt
itself to speed up and reduce energy consumption even of control-
flow oriented software, which includes applications different from
DSP like or loop centered ones, which do not present hot spots (a
few number of kernels with high execution rates).

The next section reviews the existing reconfigurable architec-
tures and dynamic optimization techniques. Section 3 shows the
experiments we have performed to figure out what are the main
challenges when it comes to proposing a reconfigurable architec-
ture capable of optimizing programs with different behaviors.
The proposed approach, described in details in Sections 4-6, can
be applied to embedded and general-purpose domains, and in this
work both these application fields are analyzed. Section 7 presents
the simulation environment, results and a critical analysis, and
compares our architecture with others.

It will be shown that, by the cost of extra area and power con-
sumption, 2.7 times of performance gains and 2.35 times of energy
savings are achieved, on average, compared to a single issue MIPS
executing the MIBench benchmark set. The proposed technique
also shows higher IPC than a 4-issue out of order superscalar pro-
cessor based on the MIPS ISA. Section 8 demonstrates our contribu-
tion considering the whole context of reconfigurable systems.
Finally, the last section draws conclusions and introduces future
work.

2. Related work

2.1. Traditional reconfigurable systems and HLS synthesis

A reconfigurable architecture has the ability to adapt according
to the needs of a given task at hand, performing several and differ-
ent hardware computations. Usually, it comprises a reconfigurable
logic, a context memory to store configurations, a General Purpose
Processor (GPP), and a special component to control and reconfig-
ure the logic (the controller may be also responsible for the com-
munication among the previously cited components). Chunks of
code are executed on the reconfigurable fabric, while the remain-
ing instructions are executed on the GPP. The main challenge is
to find the best tradeoff between which chunks of code should
be executed on the reconfigurable fabric and the extra area and
memory footprint necessary for that.

In accordance to the classification studies presented in [9–11],
in this section we discuss only the most relevant work in the field.
Concise [12] and Chimaera [13] use a tightly coupled reconfigura-
ble unit. It works as another ordinary functional unit and limited to
combinational logic only. The GARP machine [14] comprises a
MIPS compatible processor with a loosely coupled and fine-grained

reconfigurable unit (bit level operations). REMARC [15] is also a
fine-grained architecture, and works as a loosely coupled coproces-
sor. RaPiD [16] and Piperench [17] are examples of coarse-grained
reconfigurable architectures (word level operations). The main
novelty of the Piperench architecture is the ‘‘pipelined reconfigura-
tion’’: a given kernel is broken into pieces, and these pieces can be
reconfigured and executed on demand. Afterwards, in a process
called virtualization, they are multiplexed in time and space to
be executed in the reconfigurable logic. The Molen [18] microcod-
ed reconfigurable unit is a fine-grained, loosely coupled, and works
together with a PowerPC processor.

DISC [19], OneChip [20], PRISM-II [21] are other reconfigurable
architectures that employ standard fine-grained FPGA resources. In
the group of coarse-grained reconfigurable systems, one could also
include: Pact-XPP [22], Morphosys [23], Pleiades [24] and ADRES
[25]. Furthermore, there are also reconfigurable architectures that
are very similar to dataflow machines. For instance, TRIPS is based
on a hybrid von-Neumann/dataflow architecture that combines an
instance of coarse-grained, polymorphous grid processor core with
an adaptive on-chip memory system [26]. TRIPS uses three differ-
ent execution modes, focusing on instruction-, data- or thread-le-
vel parallelism. Wavescalar [27] is another example, and its
implementation is very similar to the structure found in TRIPS.

Furthermore, there are several approaches that generate syn-
thesized code from high level programming languages by the use
of automatic converters. In these cases, the most computationally
intensive code parts of the applications are translated from high le-
vel languages, such as C, to hardware description languages, such
as VHDL or Verilog. Those parts will be executed in dedicated FPGA
hardware or ASIC instead of on the GPP. Usually these converters
are limited to a sub-set of the C language (for instance, pointers,
unbounded loops and compiler libraries cannot be translated);
and the generated hard code cannot be easily modified in cases
the application changes or if designs constraints change.

In [61], it is proposed a computing machine that uses a single,
serial instruction representation of an application. The parallel por-
tions of the application are converted into a spatial representation
to be accelerated by the reconfigurable fabric. The runtime conver-
sion to spatial representation is facilitated by the use of an instruc-
tion set architecture based on an operand queue (rather than based
on a stack or register file), to express the dependencies between
the operations. To better identify portions of code for hardware
compilation, instructions (loopbegin and loopend) are inserted in
the source code to indicate the boundaries of parallelizable loops.
Mittal et al. [60] proposes automatic translation of software bina-
ries (compiled to the C6000, a Texas Instruments DSP) to a Register
Transfer Level (RTL) language – VHDL or Verilog, which is after-
wards mapped to a Xilinx Virtex II FPGA. Many optimizations are
applied in the code by the proposed translation tool (the FREEDOM
compiler), such as data dependency analysis, procedure extraction,
induction variable analysis, and memory optimizations. Good
speedups over the DSP processor are shown (between 3 and 20
times). Molen [59], ROCCC [54], DRESC [55], PARLGRAN [56] and
the approaches presented in [57,58] are representative examples
that exploit the parallelism of loops by using techniques such as
loop unrolling and software pipelining to boost the performance
of applications.

However, besides not being capable of accelerating applications
with heterogeneous behaviors, which narrows their field of appli-
cation to few domains (such as streaming or multimedia), none of
these architectures present the desired characteristics to maintain
binary compatibility. They heavily rely on compiler driven re-
source allocation, and modify the binary or source codes before
its execution, which increases the design cycle. Such issues can
be solved only through the use of dynamic optimization: the sys-
tem’s ability to adapt itself during execution.

510 A.C.S. Beck et al. / Microprocessors and Microsystems 38 (2014) 509–524



Download English Version:

https://daneshyari.com/en/article/462598

Download Persian Version:

https://daneshyari.com/article/462598

Daneshyari.com

https://daneshyari.com/en/article/462598
https://daneshyari.com/article/462598
https://daneshyari.com

