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a b s t r a c t

In applications solutions of systems of hyperbolic balance laws often have to satisfy additional

side conditions. We consider initial value problems for the general class of Friedrichs systems

where the solutions are constrained by differential conditions given in the form of involutions.

These occur in particular in electrodynamics, electro- and magnetohydrodynamics as well as in

elastodynamics. Neglecting the involution on the discrete level typically leads to instabilities.

To overcome this problem in electrodynamical applications it has been suggested in Munz et al.

(2000) to solve an extended system. Here we suggest an extended formulation to the general

class of constrained Friedrichs systems. It is proven for explicit Finite-Volume schemes that the

discrete solution of the extended system converges to the weak solution of the original system

for vanishing discretization and extension parameter under appropriate scalings. Moreover

we show that the involution is weakly satisfied in the limit. The proofs rely on a reformulation

of the extension as a relaxation-type approximation and careful use of the convergence theory

for finite-volume methods for systems of Friedrichs type. Numerical experiments illustrate

our analytical results.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study linear systems of balance laws, namely (m × m)-systems of Friedrichs [15] type with m ∈ N. We consider

the spatially d-dimensional case with d ≥ 2, space coordinates x = (x1, . . . , xd)
T , and time t ≥ 0. For T > 0, let G1, . . . , Gd, D : R

d ×
[0, T] → R

m×m and f : R
d × [0, T] → R

m be given (matrix-valued) functions. We suppose that the matrices G1(x, t), . . . , Gd(x, t)
are symmetric for all (x, t) ∈ R

d. Then the initial value problem for the unknown vector-valued function u : R
d × [0, T] → R

m

takes the form

∂

∂t
u(x, t)+

d∑
i=1

∂

∂xi

(
Gi(x, t)u(x, t)

)+ D(x, t)u(x, t) = f (x, t), (1.1)

u(x, 0) = u0(x). (1.2)
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Here u0 : R
d → R

m denotes the initial function. Moreover we require the solution u to satisfy a linear differential side condition

of the form

d∑
i=1

Mi
∂

∂xi

(u(x, t)) = 0, ((x, t) ∈ R
d × [0, T)). (1.3)

Here Mi, i = 1, . . . , d, are constant (m × m)-matrices. Following the notion of Dafermos [7,8] for the side condition (1.3), we

restrict ourselves to involutions.

Definition 1.1. The differential constraint (1.3) is called an involution for the system (1.1) if and only if any (weak) solution of

(1.1)–(1.2) (weakly) satisfies (1.3), whenever the initial data do so.

Involutions appear frequently in applications. We mention the classical Maxwell system to describe electrodynamical pro-

cesses (cf. [21]). The divergence of the electrical and magnetical field is constrained in this case. The induction equations in the

(in)compressible electro- and magnetohydrodynamical equations provide similar examples but with (x, t)-dependence in the

flux (Section 5 below). Solutions of the equations of linear elasticity have to satisfy compatibility conditions on the deformation

gradient, which result in an involutionary condition (cf. chap. 5 of [7]) Yet another example is the linear piezoelectrical system

(see [24]). In Section 5 we present some of these examples in more detail. Let us mention that involutions of course appear also in

the more challenging case of nonlinear conservation laws. Again magnetohydrodynamics [6], electrohydrodynamics, nonlinear

elasticity systems, but also Einstein’s equations of general relativity are prominent examples.

On the analytical level an involutionary side condition is not problematic. The well-posedness for (1.1)–(1.3) is well known

from [7]. By definition the involution (1.3) is satisfied. Also standard numerical schemes are known to converge. However,

without consideration of (1.3) in the numerical scheme the residuum in the side condition usually grows with increasing time.

In coupled processes this is a typical source of instabilities (cf. [25] and cites therein). Therefore a wide range of stabilization

methods has been suggested (e.g. [1,3–5,18,26]).

The motivation for this contribution is the work of Munz et al. [26]. They introduced in particular the so-called hyperbolic

Generalized Lagrangian Multiplier Finite Volume Method (GLM-FVM) to compute approximate solutions for Maxwell’s system of

linear electrodynamics. We formulate this approach for the general problem (1.1)–(1.2) with involution (1.3). While the original

approach is motivated by a generalization of a Finite-Element type method [1] for a constrained wave equation we consider the

approach as the approximation of (1.1)–(1.3) by an extended relaxation-type system.

To be precise let a, ε > 0 and u0, ψ0 : R
d → R

m be given. Consider the following initial value problem for the unknown

function: wε : R
d × [0, T] → R

2m, wε := (uε
1, . . . , uε

m,ψε
1 , . . . ,ψε

m)T satisfying

∂

∂t
uε +

d∑
i=1

∂

∂xi

(Gi(x, t)uε)+ MT
i

∂

∂xi

ψε + D(x, t)uε = f (x, t), (1.4)

∂

∂t
ψε +

d∑
i=1

Mi

ε

∂

∂xi

uε + aψε = 0, (1.5)

and

uε(x, 0) = u0(x), ψε(x, 0) = ψ0(x). (1.6)

We will show in Section 2 that the initial value problem for the extended system (1.4)–(1.6) is well-posed. For ψ0 ≡ 0 we have

in particular uε = u, a.e., where u is the solution of (1.1)–(1.2). In Section 3 we present the Generalized Lagrangian Multiplier

Finite Volume Method (GLM-FVM) for the general system (1.1)–(1.3). For mesh parameter h > 0 this gives us the mesh function

uε
h

: R
d × [0, T] → R

m. The method will be analyzed in Section 4. By careful investigation of the convergence theory from Vila

and Villedieu [30] and Jovanovic and Rohde [19] we obtain for ε sufficiently small (see Theorem 4.6)

‖uε
h − u‖

L2(Rd×[0,T];Rm) = O(ε−1/4 h1/2). (1.7)

Moreover we will show that a weak constraint error behaves like O(ε1/4h1/2) (Corollary 4.9). The crucial fact is now that by an

appropriate choice ε = ε(h) one can control the constraint error and ensure the convergence of the method. This expresses the

dissipative character of the approximation (1.4)–(1.6). Up to our knowledge convergence statements on error and constraint

error have not been derived for any of the existing methods to handle involutionary systems [1,3,5,18,26]. Let us point out that

the original ansatz from [26] was motivated by the idea to transport divergence errors simply away from the computational

domain. Here we consider the full-space case. Our results show therefore that for appropriate choice of parameters the method

does not only advect possible involution errors but also damps them.

The assumptions, definitions, general results on Friedrichs systems and some notation are summarized in Section 2, while

Section 3 is devoted to the numerical scheme. Section 4 contains the analysis of the scheme and in particular the proofs of the

main convergence theorems (Theorem 4.6 and Corollary 4.9). In the last section we present applications and numerical examples

to illustrate the relation between error and constraint error for the GLM-FVM. Moreover we show that the GLM-FVM (in contrast

to the standard finite-volume method) is efficient in damping the constraint error even for perturbations of (1.1) that violate the

constraint. This observation is important for the practical use of the GLM-FVM, e.g., Maxwell’s equations with non-conserved

charge loading.
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