
Microprocessors and Microsystems 41 (2016) 1–11

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Improving the efficiency of functional verification based on test

prioritization

Shupeng Wang, Kai Huang∗

College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China

a r t i c l e i n f o

Keywords:

Functional verification

Simulation-based verification

Coverage metrics

Test prioritization

k-means algorithm

a b s t r a c t

Functional verification has become the key bottleneck that delays time-to-market during the embedded

system design process. And simulation-based verification is the mainstream practice in functional veri-

fication due to its flexibility and scalability. In practice, the success of the simulation-based verification

highly depends on the quality of functional tests in use which is usually evaluated by coverage metrics.

Since test prioritization can provide a way to simulate the more important tests which can improve the

coverage metrics evidently earlier, we propose a test prioritization approach based on the clustering algo-

rithm to obtain a high coverage level earlier in the simulation process. The k-means algorithm, which is

one of the most popular clustering algorithms and usually used for the test prioritization, has some short-

comings which have an effect on the effectiveness of test prioritization. Thus we propose three enhanced

k-means algorithms to overcome these shortcomings and improve the effectiveness of the test prioritiza-

tion. Then the functional tests in the simulation environment can be ordered with the test prioritization

based on the enhanced k-means algorithms. Finally, the more important tests, which can improve the

coverage metrics evidently, can be selected and simulated early within the limited simulation time. Ex-

perimental results show that the enhanced k-means algorithms are more accurate and efficient than the

standard k-means algorithm for the test prioritization, especially the third enhanced k-means algorithm.

In comparison with simulating all the tests randomly, the more important tests, which are selected with

the test prioritization based on the third enhanced k-means algorithm, achieve almost the same coverage

metrics in a shorter time, which achieves a 90% simulation time saving.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Functional verification has become the bottleneck in the sys-

tem design development cycle due to the increasing complex-

ity of hardware design and the never ending pressure of shorter

time-to-market in recent years [1]. Since simulation-based verifi-

cation can locate the errors rapidly and it is not limited by the

size of embedded systems, it has been the most used method for

functional verification. In a practical simulation process, a test gen-

erator produces extensive functional tests which are usually as-

sembly programs. Then these functional tests are then fed in par-

allel to a design under test (DUT) and its reference model to check

the functional correctness of the embedded systems. In a state-of-

the-art verification flow, a test plan is first created, specifying the

tasks of the DUT to be verified. The completeness of these tasks is

usually measured by coverage metrics [2] including code coverage

and functional coverage. Code coverage, such as branch, condition

∗ Corresponding author. Tel.: +86 13958081772.

E-mail addresses: wangsp@vlsi.zju.edu.cn (S. Wang), huangk@vlsi.zju.edu.cn

(K. Huang).

and line coverage, is obtained by evaluating the hardware code ex-

ecution. Meanwhile, functional coverage is obtained by evaluating

function points which are the combination of the characteristics

of the DUT and a series of considerable events that must be ver-

ified. The coverage metrics can locate the functions that have not

been verified and evaluate the progress of functional verification.

The simulation-based verification is very effective to ensure the

integrity and functional correctness of embedded systems with the

help of coverage metrics, however its success in terms of both sim-

ulation cost spent and finial verification quality achieved, highly

depends on the quality of the functional tests in the simulation

environment. The major drawback of mainstream simulation is the

difficulty of producing and selecting the functional tests that can

lead to the desired coverage level in a short time. Typically, func-

tional tests are divided into three categories, direct tests manually

written by designers, random tests created by test generators ran-

domly, and coverage-directed tests generated dynamically based on

an algorithm to achieve higher coverage metrics [3,4].

Coverage-directed test generation (CDTG) techniques dynam-

ically analyze coverage results and automatically update the

test generation process (usually by changing constraints of the

http://dx.doi.org/10.1016/j.micpro.2015.12.001

0141-9331/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.micpro.2015.12.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2015.12.001&domain=pdf
mailto:wangsp@vlsi.zju.edu.cn
mailto:huangk@vlsi.zju.edu.cn
http://dx.doi.org/10.1016/j.micpro.2015.12.001


2 S. Wang, K. Huang / Microprocessors and Microsystems 41 (2016) 1–11

generator) according to the simulation results and in this way

improve the efficiency of functional verification. CDTG techniques

employ a variety of learning techniques such as Bayesian Net-

works [5–7], Markov Models [8,9], Genetic Algorithms [1,10,11] and

Inductive Logic Programming [12]. Katz et al. proposed to learn

test knowledge from micro-architectural behavior and embed the

knowledge into test generator to produce more effective tests [13].

In [14], the authors proposed a methodology based on consistency

algorithm to attain faster coverage. While many promising tech-

niques have been proposed, CDTG remains an on-going and active

research area [15].

In practice, random tests as well as direct tests are mostly used

to ensure the functional correctness of embedded systems. Direct

tests are applied to cover corner cases and important features of

the DUT. Unfortunately, they are often not portable, even across

multiple proliferations of the same hardware design, and must be

virtually recreated from scratch each time [9]. Random tests are

generated by a test generator based on the test templates provided

by designers which define the structure of the desired test, along

with primitives to control the randomization of the related data,

such as op-codes, register operands, and memory addresses [16,17].

Random testing is a long-standing approach used to locate design

errors, where thousands of random tests can be created by the test

generator based on the test templates easily and quickly. In com-

parison with direct tests, random tests are completed with mini-

mal manual involvement. However, simulating all the random tests

in a simulation environment takes a long time and it is unneces-

sary, as many tests can only cover the similar coverage space and

helpless to improve the coverage metrics evidently. Meanwhile it

is unaffordable to simulate all the generated random tests due to

time and computational power constraints. One way to help this

situation is to apply test prioritization that reorders tests and iden-

tifies more important tests that are likely lead to the high cover-

age level. Then these important tests can be simulated early within

the limited simulation time. With this approach, the chances to

achieve the desired coverage level in a short time can be increased

and the efficiency of functional verification can be improved.

To date, various test prioritization techniques [18–22] have been

proposed and empirically studied. Most of researchers used code

coverage information to implement prioritization techniques, and

recent prioritization techniques used other types of code informa-

tion, such as slices [23], change history [24], or code modifica-

tion information and fault proneness of code [25]. Further, numer-

ous empirical studies showed that prioritization techniques that

use source code information can improve the effectiveness of test-

ing [26–28]. And the researchers found that a clustering approach

could help improve the effectiveness of prioritization [29,30]. Leon

and Podgurski proposed a test prioritization technique incorpo-

rating sampling methods that select tests from clusters that are

formed based on distributions of test execution profiles [31]. Their

technique utilizes clustering approach in test prioritization, but

they simply apply random selection of tests from clusters for pri-

oritization. In contrast, in [29], the authors reduced the required

number of pair-wise comparisons significantly by clustering tests.

In [30], the authors implemented new prioritization techniques

that incorporate a clustering approach and utilize code cover-

age, code complexity, and history data on real faults. Though the

above-mentioned test prioritization techniques are very efficient

in testing, to the best of our knowledge, these test prioritization

techniques are all used in the software testing rather than the

functional verification of embedded systems. We conjecture that

the test prioritization technique, which utilizes the clustering ap-

proach, can also play a role in the functional verification of em-

bedded systems. If this conjecture is correct, we could manage

the functional verification of embedded systems more efficiently

with the test prioritization technique that can utilize clustering

approaches. For instance, if we do not have enough time to sim-

ulate all the tests in a simulation environment, by simulating a

limited number of tests from each test set, we still could have a

better chance to obtain a higher coverage level than otherwise. In

this paper, we investigate whether this conjecture is correct and

use the k-means algorithm [32,33] to improve the test prioritiza-

tion technique in the simulation-based verification. The k-means is

one of the simplest but most popular unsupervised learning algo-

rithms that has been extensively used to cluster data points. The

algorithm is easy to implement and apply even on large data sets

and therefore the k-mean clustering technique has been success-

fully applied in various areas [34,35], ranging from statistics, data

mining to general information technology. The k-means algorithm

can simplify the test prioritization process by dividing tests into a

set of test sets that have similar coverage space. However, the stan-

dard k-means algorithm has some shortcomings. We make several

attempts to overcome these shortcomings and improve the effi-

ciency of the k-means algorithm and the effectiveness of the test

prioritization.

The rest of the paper is organized as below. Section 2 de-

scribes the proposed test prioritization technique that incorporates

a clustering approach briefly. Section 3 shows the proposed test

encoding method to convert tests into a set of feature vectors.

Section 4 introduces the coverage estimation flow of un-simulated

tests based on a coverage database and then functional tests in a

simulation environment can be indicated by a set of data points

based on their estimated coverage. Section 5 describes the cluster-

ing approach with the enhanced k-means algorithms and the test

prioritization process based on the estimated coverage of tests is

shown in Section 6. Section 7 presents the experimental results

on a high-performance 32-bit quad-processor system. Finally, the

main conclusions are summarized in the final section.

2. Overview of the proposed approach

As shown in Fig. 1, the basic steps of the proposed approach

are following:

1. The first step is to direct the test generator to produce a

large number of single-instruction tests and common used

sequences called database tests. Then these database tests

are indicated by a set of feature vectors with the proposed

test encoding approach.

2. The next step is to simulate these database tests and obtain

their true coverage. Then we can build a coverage database

based on their true coverage and feature vectors. This cov-

erage database can be used to estimate the coverage of un-

simulated tests.

3. The third step is to direct the test generator to produce n

functional tests to be the total test set T = {t1, … , tn}.

Then these functional tests are converted into a set of fea-

ture vectors and estimated their coverage with the cover-

age database. Based on their estimated coverage, these func-

tional tests can be indicated with a set of data points em-

bedded in multi-dimensional space.

4. The next step is to partition these data points into k clus-

ters with the proposed enhanced k-means algorithms. These

functional tests are classified into k test sets accordingly

based on the correspondence between the tests and the data

points.

5. The fifth step is the prioritization of functional tests in each

test set based on the estimated coverage. In this way, the

functional tests in each test set are prioritized.

6. The final step is to visit each test set with the round robin

method and reorder these functional tests. Then these re-

ordered tests are simulated in order and the more important



Download English Version:

https://daneshyari.com/en/article/462601

Download Persian Version:

https://daneshyari.com/article/462601

Daneshyari.com

https://daneshyari.com/en/article/462601
https://daneshyari.com/article/462601
https://daneshyari.com

