
Applied Mathematics and Computation 273 (2016) 68–73

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Acyclic and star coloring of P4-reducible and P4-sparse graphs

Jun Yue∗

School of Mathematical Sciences, Shandong Normal University, Jinan 250014, Shandong, China

a r t i c l e i n f o

Keywords:

Vertex coloring

Join

Disjoint union

Cographs

P4-reducible graphs

P4-spare graphs

a b s t r a c t

An acyclic coloring of a graph G is a proper vertex coloring such that G contains no bicolored

cycles. The more restricted notion of star coloring of G is an acyclic coloring in which each path

of length 3 is not bicolored. In this paper, we mainly study on the acyclic and star coloring of

P4-reducible and P4-sparse graphs. Moreover, we list polynomial-time algorithms for giving

an optimal acyclic or star coloring of a P4-reducible or P4-sparse graph.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

All graphs considered in this paper are simple, finite and undirected. We follow the terminology and notation of Bondy

and Murty [3]. Except the classical vertex coloring and edge coloring, many kinds of colorings have been studied, such as list

coloring, complete coloring and injective coloring. In addition, rainbow connection and rainbow vertex-connection are new

types of coloring, as described in a recent survey [21] and other studies [6,14,19,20].

Let G be a simple graph. A k-vertex coloring, or simply a k-coloring of G is a mapping ϕ from V(G) to [k] = {1, 2, . . . , k}. A vertex

coloring is proper if no two adjacent vertices are assigned the same color. The chromatic number of a graph G, denoted by χ (G),

is the minimum number of colors required in any proper coloring of G. An acycle coloring of a graph G is a proper coloring such

that G contains no bicolored cycles. A star coloring of a graph G is a acyclic coloring of G in which each path of length 3 is not

bicolored. The acyclic and star chromatic numbers of G are defined analogously to the chromatic number and are denoted by

χα(G) and χ s(G), respectively. Obviously, χα(G) ≤ χ s(G) for every graph G.

A great deal of graph-theoretical research has been conducted on acyclic and star coloring since they were introduced in the

early seventies by Grünbaum [11]. Grünbaum proved an upper bound of nine for the acyclic chromatic number of any planar

graph G, with n ≥ 6 in [11]. His upper bound was improved many times [1,17,22] and at last Borodin [4] proved an upper bound

of five colors for planar graphs. Alon et al. in [2] showed that acyclic chromatic number of a graph with maximum degree d is

O(d
4
3 ) as d → ∞. For the star coloring, the first result is that every subcubic graph is 7-star-choosable [11]. And then, Fertin et al.

[10] gave the exact value of the star chromatic number of different families of graphs such as trees, cycles, complete bipartite

graphs, outer-planar graphs, and two-dimensional grids, and also studied and gave bounds for the star chromatic number of

other families of graphs, such as planar graphs, hypercubes, d-dimensional grids (d ≥ 3), d-dimensional tori (d ≥ 2), graphs with

bounded tree-width and cubic graphs, and also gave an up-bound for any graph G, χs(G) ≤ �20d
3
2 �, where d is the maximum

degree of G.

The acyclic and star coloring problems are both NP-hard, and most results concerning their complexity on special classes

of graphs are negative. In particular, both problems remain NP-hard even when restricted to bipartite graphs in [5,7]. In addi-

tion, Albertson and Berman [1] showed that the problem of determining whether the star chromatic number is at most 3 is
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NP-complete even for planar bipartite graphs. In the same paper, the authors also showed that it is NP-complete to decide

whether the chromatic number of a graph G is equal to the star chromatic number of G, even if G is a planar graph with chromatic

number 3. Inapproximability results for both problems are given in [12].

Researchers have obtained a few positive algorithmic results for these problems on graphs for which the acyclic or star chro-

matic number is bounded by a constant. In particular, Skulrattanakulchai [24] gives a linear-time algorithm for finding an acyclic

coloring of a graph with maximum degree 3 that uses four colors or fewer, and Fertin and Raspaud [9] give a linear-time al-

gorithm for finding an acyclic coloring of a graph with maximum degree 5 that uses nine colors or fewer. Lyons [18] gave a

polynomial-time algorithm for finding an acyclic and star coloring of cographs.

In this paper, we mainly consider the acyclic and star coloring of P4-reducible and P4-sparse graphs. In Section 2, we firstly

give some basic definitions and known results, which will be used in the following sections. And then we also give the exact

values of the acyclic and star chromatic numbers of a spider graph. Section 3 lists a linear-time algorithm to give an acyclic or

star coloring of a P4-reducible graph, and also gives a polynomial time algorithm to find an acyclic or star coloring of a P4-spare

graph.

2. Preliminaries

In this section, we state some basic concepts and symbols, which will be used in the following paper. For other notation and

terminology, we refer to [3] and [23].

Let G = (V, E) be a graph with no isolated vertices. A path is a graph P = (V, E) of the form

V = {x0, x1, . . . , xk} E = {x0x1, x1x2, . . . , xk−1xk},
where the xi are all distinct. A path which has k vertices is denoted by Pk. A graph is called a cograph if it has no chordless path

on four vertices, also called P4-free graph. A graph G is P4-reducible if no vertex in G belongs to more than one P4. The class of

P4-sparse graphs was introduced by Hoàng [13] as the class of graphs for which every set of five vertices induces at most one

P4. The classes of P4-sparse graphs, cographs and P4-reducible graphs have been studied extensively in recent years and have

applications in many areas of applied mathematics, computer science and engineering, mainly because of their good algorithmic

and structural properties, see [8,15,16].

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs such that V1 ∩ V2 = φ. The disjoint union of G1 and G2 is G1 ∪ G2 = (V1 ∪ V2, E1 ∪
E2). The join of G1 and G2, denoted by G1 + G2, is the graph obtained by adding all the possible edges between G1 and G2, i.e.,

G1 ∨ G2 = (V1 ∪ V2, E1 ∪ E2 ∪ {v1v2|v1 ∈ V1, v2 ∈ V2}.

For those two graph operations, there is a known result of the acyclic and star coloring.

Lemma 2.1 [18]. The following hold for any graphs G1 and G2.

(i) χα(G1 ∪ G2) = max{χα(G1), χα(G2)}.

(ii) χs(G1 ∪ G2) = max{χs(G1), χs(G2)}.

(iii) χα(G1 ∨ G2) = min{χα(G1) + |V2|, χα(G2) + |V1|}.

(iv) χs(G1 ∨ G2) = min{χs(G1) + |V2|, χs(G2) + |V2|}.

Since cographs are the base of P4-reducible and P4-sparse graphs, we will firstly introduce the structure of the cographs as

the following definition.

Definition 2.1 [8]. A graph G = (V, E) is a cograph if and only if one of the following conditions hold:

(i) |V | = 1;

(ii) there exist cographs G1, G2, . . . , Gk such that G = G1 ∪ G2 ∪ · · · ∪ Gk;

(iii) there exist cographs G1, G2, . . . , Gk such that G = G1 ∨ G2 ∨ · · · ∨ GK .

Using the above structure of cographs, Lyons [18] gave an polynomial-time algorithm for finding an acyclic and star coloring

of cographs. Similarly, we will consider the structure of P4-reducible and P4-sparse graphs, and in the next sections give the

polynomial-time algorithms for acyclic and star coloring. As end this section, we give the following results for acyclic and star

coloring of a spider.

A spider is a graph whose vertex set can be partitioned into S, C and R, where S = {s1, s2, . . . , sk} (k ≥ 2) is a stable set;

C = {c1, c2, . . . , ck} is a complete set; si is adjacent to cj if and only if i = j (a thin spider), or si is adjacent to cj if and only if i

= j (a thick spider); R is allowed to be empty and if it is not, then all the vertices in R are adjacent to all the vertices in C and

non-adjacent to all the vertices in S. Clearly, the complement of a thin spider is a thick spider, and vice versa. The triple (S, C, R)

is called the spider partition.

Lemma 2.2 [15]. Let G be a spider with spider partition (S, C, R). If R is empty, then χ(G) = |C|; otherwise, χ(G) = |C| + χ(G[R]).

For the acyclic and star coloring of a spider, we get the following lemmas.

Lemma 2.3. Let G be a spider with spider partition (S, C, R). If R is empty, then χα(G) = |C|; otherwise, χα(G) = χα(G[R]) + |C|.
Proof. Let G be a spider with spider partition (S, C, R). We will prove the lemma by the following cases.
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