
Microprocessors and Microsystems 41 (2016) 12–28

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Anytime system level verification via parallel random exhaustive

hardware in the loop simulation�

Toni Mancini∗, Federico Mari, Annalisa Massini, Igor Melatti, Enrico Tronci

Computer Science Department, Sapienza University of Rome, Italy

a r t i c l e i n f o

Keywords:

Model Checking of Hybrid Systems

Model checking driven simulation

Hardware in the loop simulation

a b s t r a c t

System level verification of cyber-physical systems has the goal of verifying that the whole (i.e., software +

hardware) system meets the given specifications. Model checkers for hybrid systems cannot handle sys-

tem level verification of actual systems. Thus, Hardware In the Loop Simulation (HILS) is currently the

main workhorse for system level verification. By using model checking driven exhaustive HILS, System

Level Formal Verification (SLFV) can be effectively carried out for actual systems.

We present a parallel random exhaustive HILS based model checker for hybrid systems that, by simulating

all operational scenarios exactly once in a uniform random order, is able to provide, at any time during

the verification process, an upper bound to the probability that the System Under Verification exhibits an

error in a yet-to-be-simulated scenario (Omission Probability).

We show effectiveness of the proposed approach by presenting experimental results on SLFV of the In-

verted Pendulum on a Cart and the Fuel Control System examples in the Simulink distribution. To the

best of our knowledge, no previously published model checker can exhaustively verify hybrid systems of

such a size and provide at any time an upper bound to the Omission Probability.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The cost for fixing a design error in a system becomes larger

and larger as the design proceeds from the requirement analysis

to the implementation (see, e.g., [2, Chapter 1]) since the later in

the design phase an error is detected the more reworking it may

trigger. The above observation has motivated the development of

methods and tools to verify correctness of a system already in the

early phases of its design, namely during the requirement analysis

or during the functional specification phases. The goal of all such

approaches is to catch design errors well before the system imple-

mentation begins.

Of course, all such approaches are model based, that is they

work on a model describing the system behaviour since no sys-

tem implementation exists in the early design phases. Accordingly,

System Verification is carried out by simulating a system model and

analysing its behaviour under a suitable set of simulation scenarios.

For example, in a digital hardware setting, model based ap-

proaches have been used since a long time. In fact, even before

� This paper is an extended and revised version of [1].
∗ Corresponding author.

E-mail addresses: tmancini@di.uniroma1.it (T. Mancini), mari@di.uniroma1.it

(F. Mari), massini@di.uniroma1.it (A. Massini), melatti@di.uniroma1.it (I. Melatti),

tronci@di.uniroma1.it (E. Tronci).

considering going to silicon, a heavy simulation activity is per-

formed, aimed at verifying that the system model (defined, e.g.,

using Verilog, VHDL or SystemC1) meets the system requirements

for most (possibly all) uncontrollable inputs (that is, primary inputs

and faults the system is expected to withstand).

Along the same line of reasoning, in a purely software setting,

before generating low level code, model based approaches are used

to verify that the software model (defined, e.g., using AADL [3,4])

meets the given requirements.

If all possible simulation scenarios are considered, then we can

prove correctness of the system (i.e., absence of simulation sce-

narios violating the system requirements), otherwise we can only

show that the system design is faulty (by exhibiting a simulation

scenario violating the system requirements). In other words, a sim-

ulation campaign that does not consider all possible simulation sce-

narios can only show that the system design has a bug. To show

correctness of the system design we need an exhaustive simula-

tion campaign, that is one considering all possible simulation sce-

narios. A verification approach able to show system correctness is

usually referred to as formal verification. One of the most successful

techniques to carry out formal verification is Model Checking (see,

e.g., [5]).

1 http://www.mentor.com/products/fv/hdl_designer/

http://dx.doi.org/10.1016/j.micpro.2015.10.010

0141-9331/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.micpro.2015.10.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2015.10.010&domain=pdf
mailto:tmancini@di.uniroma1.it
mailto:mari@di.uniroma1.it
mailto:massini@di.uniroma1.it
mailto:melatti@di.uniroma1.it
mailto:tronci@di.uniroma1.it
http://www.mentor.com/products/fv/hdl_designer/
http://dx.doi.org/10.1016/j.micpro.2015.10.010

T. Mancini et al. / Microprocessors and Microsystems 41 (2016) 12–28 13

The need for model checking stems from the high cost that

a bug may have for certain systems. This is the case for mission

critical systems, that is, systems for which a system malfunction-

ing may entail loss of money, as well as for safety critical systems,

that is, systems for which a system malfunctioning may entail loss

of human lives. Examples of mission critical systems are: decision

support systems, satellites, processors (e.g., the infamous P5 FDIV

bug costed about $475 million to INTEL). Examples of safety critical

systems are: railway interlocking, avionics control software.

Many Cyber-Physical Systems (CPSs) are indeed mission or

safety critical systems. Accordingly, in this paper we focus on for-

mal verification techniques for CPSs.

A CPS consists of hardware (e.g., motors, electrical circuits, etc.)

and software components. Thus, in order to verify a CPS design,

we need methods and tools that can model and effectively support

simulation of hardware as well as software components.

From a formal point of view, CPSs can be modelled as hybrid

systems (see, e.g., [6] and citations thereof). Many Model Based De-

sign software tools offer support for modelling and simulation of

CPSs. Well known examples are Simulink2, VisSim3 and Model-

ica4. All such tools take as input a (mathematical) model of the

behaviour of the CPS along with a simulation scenario and provide

as output the time evolution (trace or simulation run) of the system

at hand.

System Level Verification of CPSs aims at verifying that the

whole (i.e., software + hardware) system meets the given specifi-

cations. System Level Formal Verification (SLFV) has the goal of ex-

haustively verifying that the above holds for all possible operational

scenarios.

For digital circuits, formal verification is usually carried out us-

ing model checking techniques (e.g., see [7]). Unfortunately, model

checkers for hybrid systems cannot handle SLFV of real world CPSs.

Thus, HILS is currently the main workhorse for system level verifi-

cation of CPSs, and is supported by model based design tools (e.g.,

the previously mentioned Simulink, VisSim and Modelica).

In HILS, the actual software reads/sends values from/to mathe-

matical models (simulation) of the physical systems (e.g., engines,

analog circuits, etc.) it will be interacting with. Notwithstanding

the word hardware, in HILS the only hardware present is the one

devoted to support the system simulation, that is: computational

and communication devices. This is because HILS is used in a

model based design setting to validate the system design before

any hardware is built (the whole goal of model based design). For

example, Simulink, VisSim, Modelica, ESA Satellite Simulation In-

frastructure SIMULUS5 all provide simulation software supporting

HILS, where the only hardware involved is just the computer on

which the simulator is actually running.

Simulation can be very time consuming. Accordingly, in order

to reduce system design time, Opal-RT6 and dSpace7 among oth-

ers provide modelling and simulation software along with FPGA-

based hardware to support real-time simulation. We note that in

all cases the only hardware present in HILS is the one supporting

the simulation itself.

1.1. Motivations

SLFV is an exhaustive HILS where all relevant simulation sce-

narios are considered. Using a parallel model checking driven

2 http://www.mathworks.com.
3 http://www.vissim.com.
4 http://www.modelica.org.
5 http://www.esa.int/Our_Activities/Operations/gse/ESA_operations_software_

licensable_products_-_overview .
6 http://www.opal-rt.com/about-hardware-loop-simulation .
7 https://www.dspace.com/en/inc/home.cfm .

approach, exhaustive HILS enables formal verification of actual

systems. Examples of such systems are the Inverted Pendulum on

a Cart (IPC) and the Fuel Control System (FCS) in the Simulink dis-

tribution (see Section 6.1.1).

Considering that parallel exhaustive HILS based SLFV may take

days of computation (e.g., see [8]), from a practical point of view

it would be very useful to have available at any time during the

verification process, quantitative information about the degree of

assurance attained. Such an information would enable us to eval-

uate if it is worth to continue the verification activity, or instead

stop it since the degree of assurance attained can be considered

adequate for the application at hand (graceful degradation).

The above considerations suggest looking for a HILS based

model checking approach satisfying the following requirements:

(i) it is parallel, in order to make exhaustive HILS computationally

feasible; (ii) it is exhaustive, since our focus is SLFV; (iii) it is any

time, to support graceful degradation.

The work in [9] presents a Propositional Satisfiability (SAT)

based model checker for finite state systems which returns, at any

time during the verification process, the coverage (i.e., the fraction

of operational scenarios verified so far). Unfortunately, while cov-

erage measures the amount of verification work done, it does not

provide any information about the degree of assurance attained by

the verification process. This is because formal verification aims at

finding hard to find errors, i.e., errors that were not detected while

verifying operational scenarios designed by experts. As a result,

formal verification addresses the search of errors that we are un-

likely to consider. For this reason, we can model the problem as an

adversary system, that is a system where, knowing our verification

strategy, the adversary places the error in operational scenarios we

are less likely to visit. In such a framework, any deterministic or-

dering of the operational scenarios would not increase the degree

of assurance until the end of the verification. In fact, the adversary

would choose to place the single error in the last scenario picked

by the verification procedure.

To provide a formally sound information about the degree of as-

surance attained by the verification process, approaches have been

proposed which verify the operational scenarios in a random or-

der. In particular, the work in [10] presents a Monte-Carlo based

model checker for finite state systems that provides, at any time

during the verification process, an upper bound to the probabil-

ity that the System Under Verification (SUV) exhibits an error in a

yet-to-be-simulated scenario (Omission Probability). The Omission

Probability (OP) provides indeed the information we are looking

for. Unfortunately, while Monte-Carlo based approaches guarantee

randomness (thereby enabling OP computation) they are not ex-

haustive (within a finite time).

To the best of our knowledge, no model checker is available,

neither for finite state systems nor for hybrid systems, which, at

the same time, is both random and exhaustive, thereby enabling

effective anytime SLFV. In this paper we advance the state of the

art by presenting a parallel random exhaustive HILS based model

checker along with experimental results showing its effectiveness.

1.2. Main contribution

Our System Under Verification (SUV) is a Hybrid System (e.g.,

see [6] and citations thereof) whose inputs belong to a finite set

of uncontrollable events (disturbances) modelling failures in sen-

sors or actuators, variations in the system parameters, etc. We fo-

cus on deterministic systems (the typical case for control systems)

and model nondeterministic behaviours (such as faults) with dis-

turbances. Accordingly, in our framework, a simulation scenario is

just a finite sequence of disturbances and a simulation campaign

is a finite sequence of simulation instructions (namely: save a

simulation state, restore a saved simulation state, remove a saved

http://www.mathworks.com
http://www.vissim.com
http://www.modelica.org
http://www.esa.int/Our_Activities/Operations/gse/ESA_operations_software_licensable_products_-_overview
http://www.opal-rt.com/about-hardware-loop-simulation
https://www.dspace.com/en/inc/home.cfm

Download	English	Version:

https://daneshyari.com/en/article/462602

Download	Persian	Version:

https://daneshyari.com/article/462602

Daneshyari.com

https://daneshyari.com/en/article/462602
https://daneshyari.com/article/462602
https://daneshyari.com/

