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a b s t r a c t

In this paper, we introduce a new generalization of Pascal’s triangle. The new object is called

the hyperbolic Pascal triangle since the mathematical background goes back to regular mo-

saics on the hyperbolic plane. We precisely describe the procedure of how to obtain a given

type of hyperbolic Pascal triangle from a mosaic. Then we study certain quantitative proper-

ties such as the number, the sum, and the alternating sum of the elements of a row. Moreover,

the pattern of the rows, and the appearance of some binary recurrences in a fixed hyperbolic

triangle are investigated.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

There exist several variations of Pascal’s arithmetic triangle (see, for instance, [2] or [3]). This study provides a new general-

ization. The innovation is to extend the link between the infinite graph corresponding to the regular square Euclidean mosaic

and classical Pascal’s triangle to the hyperbolic plane, which contains infinitely many types of regular mosaics. The purpose of

this paper is to describe this generalization and examine certain properties of the hyperbolic Pascal triangles. From one point we

will focus on only one regular square mosaic given by the pair {4, q}, q ≥ 5. Later we will specialize in the case q = 5. We remark,

that in this paper the terminology Pascal’s triangle is used only for Blaise Pascal’s original triangle, while the expression Pascal

triangle (without apostrophe) means a variation or generalization of Pascal’s triangle.

Let p and q denote two positive integers satisfying p ≥ 3, q ≥ 3, and consider the regular mosaic characterized by the Schläfli’s

symbol {p, q}. The parameters indicate that for regular p-gons of cardinality exactly q meet at each vertex. If (p − 2)(q − 2) = 4,

the mosaic belongs to the Euclidean plane, if (p − 2)(q − 2) > 4 or (p − 2)(q − 2) < 4, the mosaic is located on the hyperbolic

plane or on the sphere, respectively (see, for instance [4]). From now on we exclude the case (p − 2)(q − 2) < 4, since we intend

to deal only with infinite mosaics.

The vertices and the edges of a given mosaic determine an infinite graph G. Fix an arbitrary vertex, say V0. Obviously, the

q-fold rotation symmetry around V0 and q different mirror symmetries of the mosaic induce a q-fold rotation symmetry and

mirror symmetries on the graph. Consequently, in accordance with the object of examination, it is sufficient to consider only a

certain subgraph G′ of G. In order to introduce hyperbolic Pascal triangles, now we define our own G′ precisely.

Restrict the mosaic to an unbounded part P of itself by defining first the border of P, which contains regular p-gons as follows.

The border splits the mosaic into two more parts, and the part which contains just one symmetric line among the q different

symmetric lines through the vertex V0, together with the border gives P .

Taking a regular p-gon which fits to V0, we consider it as the 0th (base) cell of the border. Beginning from V0, figure the edges

of the base p-gon by 1, 2,…, p anti-clockwise (see Fig. 1). For the case of even and odd p, let first p = 2k (k ≥ 2). Mirror the base
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Fig. 1. Construction of the border of P . (For interpretation of the references to colour in the text, the reader is referred to the web version of this article.)
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Fig. 2. Pascal’s triangle on the Euclidean mosaic {4, 4}.

cell across the edge k to obtain the first cell of the left hand side part of the border. We assume that the reflection transmits the

figuring of the edges as well, for instance the edge k is common of the 0th and 1st cells. Then to gain the second cell we reflect

the first p-gon through the edge 2k of the first cell. And so on, we always mirror the �th cell through the edge k or 2k to obtain

the (� + 1)th element of the left hand side of the border. Getting back to V0 and cell 0, one can get the right hand side part of the

border in a similar way by reflecting the appropriate elements across the edges k + 1 and 1, alternately. If p = 2k + 1 ≥ 5, first

we reflect the base cell across the edge k + 1, and after then we can get the border in an analogous way to the case of even p if

we apply reflections through the edges 1, k + 2 (LHS) and 2k + 1, k (RHS), alternately in both cases. If p = 3, then after reflecting

the base cell of the mosaic across the edge 2, we construct the LHS and RHS borders by consecutive reflections across edges

1, 3, 2, 1, 3, 2, . . . , and edges 3, 1, 2, 3, 1, 2, . . . , respectively. Fig. 1 shows the construction of the border of P (and P itself when

one joins the blue and yellow parts-dark and light in black and white version), first if p is even, second if p ≥ 5 is odd, and then

when p = 3. Moreover, Fig. 4 illustrates the case {4, 5}.

Since P is a definite part of the mosaic, it eliminates a subgraph GP in the graph G of the whole mosaic. In the sequel, we

always consider only this graph GP . Assume that all edges have unit length. The distance of an arbitrary vertex V and V0 is the

length of the shortest path between them. It is clear, that the shortest path from V0 to any vertex of the outer boundary of P
is unique, and passing through on the outer boundary itself. Inside of P there are always at least two shortest path from V0 to

any V. Let us label all vertices V of GP by the number of distinct shortest paths from V0 to V. As the first illustration take the

Euclidean squared mosaic (i.e. {p, q} = {4, 4}). Then the subgraph GP with its labelling returns with Pascal’s original triangle (see

Fig. 2).

The other two Euclidean regular mosaics have no great interest since they are also associated with Pascal’s triangle (see Fig. 3).

In case of {3, 6} the appearance is direct, while {6, 3} displays all rows twice. But any hyperbolic mosaic {p, q}, in the manner we

have just described, leads to a so-called hyperbolic Pascal triangle (see the mosaic {4, 5}, Fig. 4). Thus the Euclidean mosaics and

the hyperbolic mosaics together, based on the idea above, provide a new generalization of Pascal’s triangle. In the next section,

we narrow the spectrum of the investigations by concentrating only on the mosaics having Schläfli’s symbol {4, q}. We do this

to demonstrate the most spectacular class of hyperbolic Pascal triangles, when the connection to Pascal’s triangle is the most

obvious.
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