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a b s t r a c t

The sequential block-iterative scheme based on Landweber’s method is a general iterative one

for image reconstruction. In this paper, we give the finite termination convergence for this

scheme, which provides an approach to choose relaxation coefficients. Furthermore, sufficient

and necessary convergence conditions are also established for the sequential block-iterative

scheme case.
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1. Introduction

Large systems of linear equations arise in many areas of scientific computing and engineering applications, e.g., many imaging

systems such as computerized tomography (CT) and magnetic resonance imaging (MRI) and so on (see [19–30] and references

therein). The image reconstruction problem can be modeled as the following systems of linear equations

Ax = b, (1.1)

where A is an M × N nonzero matrix, x ∈ KN and b ∈ KM denote the desired image and the observed data, respectively. K is a field of

real numbers or complex numbers. Iterative methods have the capacity of producing better quality images when measured data

contain noises or are not sufficient. Based on the classification in [9], iterative methods can be generally grouped into sequential,

simultaneous and block-iterative (sequential or simultaneous) methods. Byrne [5] pointed out that block-iterative (or called as

ordered-subset) methods are between the algebraic reconstruction technique (ART, also called Kaczmarz’s method, [21]) and the

Landweber algorithm [23]. These three iterative methods uses some, only one or all measured data at a time, respectively. ART

is regarded as a sequential block-iterative algorithm, while the Landweber algorithm is treated as a simultaneous block-iterative

algorithm [9]. When the number of blocks is only one, a sequential block-iterative algorithm is simplified as a simultaneous

algorithm. More detailed discussions on sequential and simultaneous structures can also be obtained in, e.g., [9], the review

paper [2], and [20].

Starting from a given initial approximation, the above algorithms update the approximations step by step using fixed or vari-

able relaxation parameters, one or a few at a time in a certain order, until the convergence is realized. Censor and Elfving [7] gave

✩ This work was supported in part by National Natural Science Foundation of China (11471122, 44107310), Science and Technology Commission of Shanghai

Municipality (STCSM, 13dz2260400).
∗ Tel.: +86 21 54342646431.

E-mail address: xpguo@math.ecnu.edu.cn

http://dx.doi.org/10.1016/j.amc.2015.10.028

0096-3003/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.amc.2015.10.028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2015.10.028&domain=pdf
http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100003399
mailto:xpguo@math.ecnu.edu.cn
http://dx.doi.org/10.1016/j.amc.2015.10.028


526 X.-P. Guo / Applied Mathematics and Computation 273 (2016) 525–534

the convergence of the sequential block-iterative scheme in the cases of no preconditioners and consistence, while Jiang and

Wang [20] established a unifying framework for convergence of block-iterative methods. For the Landweber scheme, necessary

and sufficient conditions for its convergence have been given and convergence within finite iterations has been proved in [27].

But no necessary and sufficient conditions for convergence of the sequential block-iterative scheme till now. For overdetermined

systems of linear equations, Bai and Jin [1] presented a class of column-decomposed relaxation methods and established its

convergence theory under suitable conditions. Bai and Liu [3] established new convergence theorems for row-action iteration

schemes such as the block Kaczmarz and the Householder–Bauer methods used to solve large linear systems and least-squares

problems. By transforming sequences and restarting, Brezinski and Redivo-Zaglia [4] accelerate Kaczmarz’s method for solving

consistent systems of linear equations. There have been a few papers on how to choose parameters for some particular conver-

gent methods. Censor et al. [8] selected relaxation parameters based on numbers of nonzero elements in column of block and

diagonal elements of positive definite diagonal weight matrices for diagonally-relaxed orthogonal projection methods. Relax-

ation parameters are not changed with iterations in the using of the block iterations with symmetric positive definite weights

[13]. Regarding the simultaneous iterative reconstruction technique (SIRT) for computed tomography as a Richardson iteration,

the relaxation parameter in [17] was chosen to be 2/(1 + ε) with ε positive but far from one. Also for the SIRT methods, Elfving

et al. [14] proposed two specified techniques to control the noise errors. Recently, a MATLAB package for algebraic iterative recon-

struction methods was released (see [18]), which contained several strategies to choose the relaxation parameters based on the

above choices, and stopping rules based on [12,25]. However, these values of relaxation parameters are still selected empirically.

There is no automated method for selecting them [17]. In this paper we try to give a step to that direction. When the roots of

some polynomial equations are chosen to be the relaxation parameters, the sequential block-iterative algorithms will be proved

to converge in finite steps. We give the necessary and sufficient convergence conditions for sequential block-iterative algorithms

in this paper, which includes the case of the Landweber scheme.

Also, problem (1.1) can be described as the convex feasibility problem (CFP), see [9,10] and references therein. In [6,15], finite

convergence of iterative projection algorithms for CFP was used to study the convergence for CFP. Here finite convergence means

that from a certain iteration index onward the algorithm does not create further changes of the iteration vectors.

In this paper, we will first present the sequential block-iterative algorithm, and its iterative formula based on singular value

decomposition (SVD, [16]). Then we will prove that the scheme converges within finite iterations. Finally, sufficient and necessary

convergence conditions for the sequential block-iterative algorithm are given for the sequential block-iterative algorithm.

2. The sequential block-iterative algorithm

In this section, a general block-iterative scheme based on Landweber’s method [23] is introduced in [20].

We first present simultaneous block-iterative scheme for solving the following system of linear equations

xn+1 = xn + αnP−1A∗W(b − Axn), n = 0, 1, . . . , (2.1)

where αn is a relaxation coefficient, preconditioner P−1 is a symmetric positive definite (SPD) matrix of order N, weight W is

a SPD matrix of order M and A∗ denotes complex conjugate of matrix A. We use [n] to denote n(mod m) + 1, where m is the

number of block. Let B = {1, . . . , M} = ∪1≤t≤mBt . Corresponding to the blocks B1, B2, . . . , Bm, matrix A is partitioned into A1, A2,

. . . , Am by row. Similarly, W1, . . . , Wm and b1, . . . , bm are the corresponding blocks of W and b, respectively. So the sequential

block-iterative scheme for solving the system of linear Eq. (1.1) can be defined as follows [20]:

xn+1 = xn + αnP−1A∗
[n]W[n](b[n] − A[n]xn), n = 0, 1, . . . . (2.2)

To write the scheme (2.2) into the following inner–outer iteration scheme (e.g. see [26]), so we get the following sequential

block-iterative scheme⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x0 arbitrary,

xn,1 = xn,

xn,k+1 = xn,k + αn,kP−1A∗
k
Wk(bk − Akxn,k),

xn+1 = xn,m+1,

k = 1, . . . , m, n = 0, 1, . . . .

(2.3)

If multiplying P
1
2 from left on scheme (2.3), we obtain
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1
2

k
bk, (2.4)

then scheme (2.3) can be rewritten as

yn,k+1 = yn,k + αn,kG∗
k(bk − Gkyn,k), k = 1, . . . , m, n = 0, 1, . . . , (2.5)

or

yn,k+1 = (I − αn,kG∗
kGk)yn,k + αn,kG∗

kbk, k = 1, . . . , m, n = 0, 1, . . . .
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