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This paper investigates the Pareto optimization scheduling problem on a single machine with

two competing agents A and B in which agent A wants to minimize the number of tardy A-jobs

and agent B wants to minimize the maximum cost of B-jobs. In the literature, the constrained

optimization problem of minimizing the number of tardy A-jobs under the restriction that

the maximum cost of B-jobs is bounded is solved in polynomial time. This implies that the

corresponding Pareto optimization scheduling problem can be solved in a weakly polynomial

time. In this paper, by presenting a new algorithm for the constrained optimization problem,

we provide a strongly polynomial-time algorithm for the corresponding Pareto optimization

scheduling problem. Experimentation results show that the proposed algorithm for the con-

sidered problem is efficient.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In the single-machine two-agent scheduling, two agents A and B, each with a set of nonpreemptive jobs, compete to process

its own jobs on a common machine in order to minimize its own objective function.

Let J A = {JA
1
, JA

2
, . . . , JA

nA
} and J B = {JB

1
, JB

2
, . . . , JB

nB
} denote the job sets of agent A and agent B, respectively. Let J = J A ∪ J B

and n = nA + nB. For each X ∈ {A, B}, the jobs in J X are called X-jobs and each subset of J X is called an X-set. The processing

time and due date of job JX
j

are denoted by pX
j

and dX
j
, respectively, j = 1, 2, . . . , nX . All jobs are available at time 0 and a feasible

schedule processes the jobs without overlap. In a feasible schedule, the jobs with processing time 0 can always be processed at

time 0. Then we assume that pX
j

> 0 for all X and j. Given a feasible schedule σ , we denote by SX
j
(σ ) and CX

j
(σ ) the starting time

and the completion time of job JX
j
, respectively. If CX

j
(σ ) ≤ dX

j
, then we call JX

j
an early job and define that UX

j
(σ ) = 0. Otherwise,

we call JX
j

a tardy job and define that UX
j
(σ ) = 1. We assume in this paper that all processing times, due dates, and objective

values are integral.

Let fA and fB be the objective functions of agent A and agent B, respectively, to be minimized. In the two-agent scheduling

research, the constrained optimization and the Pareto optimization are widely considered.

Constrained optimization problem (CP): Following the notation introduced by Agnetis et al. [1], the two constrained op-

timization scheduling problems can be denoted by 1||fA : fB ≤ Q and 1||fB : fA ≤ Q. In problem 1||fA : fB ≤ Q, we want to find a
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schedule σ so that fA(σ ) is minimized under the restriction that fB(σ ) ≤ Q. Alternatively, in problem 1||fB : fA ≤ Q, we want to

find a schedule σ so that fB(σ ) is minimized under the restriction that fA(σ ) ≤ Q.

Pareto optimization problem (PP): For a given schedule π , we denote by (fA(π ), fB(π )) the objective vector of π . If there

exists no schedule σ such that (fA(σ ), fB(σ )) ≤ (fA(π ), fB(π )) and at least one of the two strict inequalities fA(σ ) < fA(π ) and

fB(σ ) < fB(π ) holds, we call π a Pareto optimal schedule and (fA(π ), fB(π )) the Pareto optimal point corresponding to π . The goal

of Pareto optimization scheduling is to find all Pareto optimal points and, for each Pareto optimal point, a corresponding Pareto

optimal schedule. Following the notation introduced by Agnetis et al. [1], the two-agent Pareto optimization scheduling problem

on a single machine to minimize fA and fB can be denoted by 1||fA ◦ fB.

In this paper, we study the (PP) problem 1||fA ◦ fB with f A(σ ) = TUA(σ ) and f B(σ ) = f B
max(σ ), where TUA(σ ) = ∑nA

j=1
UA

j
(σ )

and f B
max(σ ) = max{ f B

1
(CB

1
(σ )), f B

2
(CB

2
(σ )), . . . , f B

nB
(CB

nB
(σ ))} with f B

j
( · ) being a nondecreasing function for each j = 1, 2, . . . , nB.

In a schedule, all tardy A-jobs can be scheduled after all early A-jobs and all B-jobs. This means that only early A-jobs and all B-jobs

can be cared in the schedule. For simplicity, the tardy A-jobs will not be considered in the schedules.

The model of two-agent scheduling was first introduced by Baker and Smith [3] and Agnetis et al. [1]. The objective func-

tions considered in their research include the maximum of regular functions (e.g., makespan or maximum lateness), the total

(weighted) completion time, and the number of tardy jobs. Some incorrect results in Baker and Smith [3] were pointed out and

corrected by Yuan et al. [21]. Ng et al. [17] considered the problem that minimizes the total completion time for one agent given

that the number of tardy jobs of the other agent is bounded. Agnetis et al. [2] initially developed a combination approach for

two-agent scheduling problems. Cheng et al. [4,5] extended the two-agent setting to the multi-agent setting in which there are

more than two agents. Leung et al. [14] and Elvikis and T’kindt [6] considered several two-agent scheduling problems on parallel

machines. Kovalyov et al. [12], Li and Yuan [15], and Fan et al. [7] introduced the two-agent scheduling problems to the batching

model and designed different dynamic programming algorithms. More extensive discussion on multi-agent scheduling can be

found in Perez-Gonzalez and Framinan [18].

Agnetis et al. [1] presented a comprehensive research for the two-agent constrained optimization scheduling problems and

the two-agent Pareto optimization scheduling problems. Especially, Agnetis et al. [1] provided an O(nA log nA + nB log nB) =
O(n log n)-time algorithm for the (CP) problem 1||TUA : f B

max ≤ Q under the assumption that the inverse function of f B
j
( · )

is available for each j ∈ {1, 2, . . . , nB}. Although the (PP) problem 1||TUA ◦ f B
max was not addressed in Agnetis et al. [1], their

O(nlog n)-time algorithm for 1||TUA : f B
max ≤ Q in fact implies that the (PP) problem 1||TUA ◦ f B

max can be solved in a weaker

polynomial O(nAnlog nlog Q∗)-time, where Q∗ = max{ f B
j
(P) : 1 ≤ j ≤ nB} with P = pA

1 + · · · + pA
nA

+ pB
1 + · · · + pB

nB
is an obvious

upper bound of f B
max. The principle for this observation can be understood by the arguments below the definition of (PP) prob-

lem in Agnetis et al. [1]: There are at most nA + 1 Pareto optimal points, and each Pareto optimal point can be obtained by

binary-search by running the above O(nlog n)-time algorithm O(log Q∗) times.

In this paper we revisit the (PP) problem 1||TUA ◦ f B
max and provide an algorithm to solve the problem in

O( min{nA, nB}n2
A
(n log n + n2

B)) = O(n5) time which is strongly polynomial. Throughout this paper, the A-jobs J A are sorted in

the EDD order ( JA
1 , JA

2 , . . . , JA
nA

) so that dA
1 ≤ dA

2 ≤ · · · ≤ dA
nA

, which costs O(nAlog nA) time. Then we fix this order ( JA
1 , JA

2 , . . . , JA
nA

) in

our discussion and call it the FEDD order of A-jobs. An FEDD-schedule of an A-set J̃ A is the schedule in which the jobs of J̃ A are

scheduled in the order coincide with the FEDD order of the A-jobs. Moreover, as in Agnetis et al. [1], we assume that the inverse

function of f B
j
( · ) is available for each j ∈ {1, 2, . . . , nB}.

The rest of the paper is constructed as follows. In Section 2, we present the principle of Pareto optimization scheduling

used in this paper, describe two algorithms related to the (CP) problems 1||TUA : f B
max ≤ Q and 1|| f B

max : TUA ≤ 0 to be used

as subroutines, and provide an algorithm, called Pareto(F), which generates a schedule optimal for 1||TUA : f B
max ≤ F and Pareto

optimal for 1||TUA ◦ f B
max. Then the remaining matter is to determine the time complexity of algorithm Pareto(F) which is done in

Section 3. To this end, we discuss in Section 3.1 the scheduling of A-jobs subject to blocking intervals and in Section 3.2 the effects

to schedule the B-jobs as blocking intervals. In Section 3.3, an algorithm, called MIN(A, Q), for solving problem 1||TUA : f B
max ≤ Q

is presented. Finally, in Section 3.4, we show that algorithm Pareto(F) can runs in O(n4) time. As a consequence, the (PP) problem

1||TUA ◦ f B
max can be solved in O(n5) time. We give some numerical experiments to support the conclusions in Section 4.

2. Principles and algorithms

We present in Section 2.1 the principle of Pareto optimization scheduling used in this paper, and in Section 2.2 two algorithms

related to the (CP) problems 1||TUA : f B
max ≤ Q and 1|| f B

max : TUA ≤ 0. In Section 2.3, we provide an algorithm, called Pareto(F),

which generates a schedule optimal for 1||TUA : f B
max ≤ F and Pareto optimal for 1||TUA ◦ f B

max.

2.1. Pareto optimization

Consider the Pareto optimization scheduling problem 1| • |f ◦ g on a single machine to minimize two objective functions f and

g. We assume that f(σ ) and g(σ ) are integral for every schedule σ . A schedule π is called an optimal and Pareto optimal schedule

of the (CP) problem 1| • |f : g ≤ V if π is optimal for problem 1| • |f : g ≤ V and also Pareto optimal for problem 1| • |f ◦ g. Then the

following lemma can be observed.
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