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a b s t r a c t

Stochastic consensus problems for linear time-invariant multi-agent systems over Markovian

switching networks with time-varying delays and topology uncertainties are dealt with. By

using the linear matrix inequality method and the stability theory of Markovian jump linear

system, we show that consensus can be achieved for appropriate time delays and topology

uncertainties which are not caused by the Markov process, provided the union of topologies

associated with the positive recurrent states of the Markov process admits a spanning tree

and the agent dynamics is stabilizable. Feasible linear matrix inequalities are established to

determine the maximal allowable upper bound of time-varying delays. Numerical examples

are given to show the feasibility of theoretical results.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Cooperative control of networked multi-agent systems has received increasing attention during the past few years, mainly

due to wide applications of multi-agent systems in many areas such as flocking/swarming, formation control, attitude alignment,

parallel computing, and distributed sensor fusion. In multi-agent cooperative control, an important topic is consensus (synchro-

nization or agreement) which refers to steering a specific variable of group members to a common value across the network by

using the local information, which is determined by the underlying network topology; see the surveys in [1,2]. Thus, the design

of appropriate control protocols and algorithms for a group of dynamic agents seeking to reach consensus on certain quantities

of interest is a critical problem.

The theoretic foundation of consensus control design for agents with simple single/double-integrator dynamics on deter-

ministic (fixed or switching) topologies has been well understood so far through the application of graph-theoretical tools (see

e.g. [3–5]). In many practical systems, the communication link between the agents may only be available at random times due

to link/node failure, signal losses, or packet drops; this motivates the recent investigation of consensus over random graphs

[6–15]. For example, Hatano and Mesbahi [7] considered the asymptotic agreement of a continuous-time single-integrator agent

dynamics over classical undirected random graphs, where each information channel between a pair of agents exists indepen-

dently at random. The results were further extended by Porfiri and Stilwell [8] to solve mean square consensus problem on

directed and weighted random information networks. Shang [9] addressed multi-agent coordination in directed moving neigh-

borhood random networks generated by random walkers. Tahbaz-Salehi and Jadbabie [10] provided necessary and sufficient

conditions for almost sure consensus of a group of single-integrator agents, where the communication graph was derived

from a strictly stationary ergodic graph process. Matei et al. [11] discussed the consensus problem of both discrete-time and
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continuous-time multi-agent systems with single-integrator dynamics over Markovian switching topologies; they showed that

the system achieves average consensus almost surely if and only if the union of topologies corresponding to the states of the

Markov process is strongly connected. Similar results were obtained for double-integrator agent dynamics by Miaoet al. [12], and

more realistic aspects including measurement noises as well as quantization errors were factored in by Huang et al. [13]. Group

consensus of discrete-time and continuous-time multi-agent systems with Markovian switching topologies was recently dis-

cussed by Zhao and Park [14] and Shang [15], respectively. Besides, means square consensus problems over fixed topology with

communication noises were tackled for discrete-time and continuous-time linear time-invariant systems in [16,17], respectively.

It is noted that for the agent dynamics described by more general linear time-invariant systems, it is challenging to derive

consensus conditions for achieving consensus due to the possible existence of strictly unstable poles in the open-loop matrix; see

e.g. [18,19]. Recently, Youet al. [20] extended the results of [11] to linear time-invariant systems; they established almost sure con-

vergence by utilizing the linear dynamics governing the evolution of the mean square consensus error. In [21], network-induced

delay and random noise effect were tackled in-depth drawing on the stability analysis of differential delay equations. Graphic

conditions for group consensus were discussed by Shang [22] for linear time-invariant systems under Markovian switching

topologies. The stochastic consensus of linear multi-input and multi-output systems with communication noises and Markovian

switching topologies was studied in [23]. However, the systems studied in [20,22,23] are without time delay. It is well recog-

nized that unmodelled time delay may affect the performance and causes instability of a system [24,25]. In multi-agent systems,

time-varying delays arise naturally due to the asymmetry of interactions, the congestion of the communication channels, and

the finite transmission speed. Moreover, the system uncertainties exist in many situations; see e.g. [26–28]. Thus, this paper is

devoted to deriving consensus conditions for linear multi-agent systems on Markovian switching topologies in the presence of

both time-varying delays and topology uncertainties which are not related to the Markov process. Although delay robustness has

been addressed in [12] for Markovian jump linear systems, their methods are mainly restricted to discrete-time systems with

fixed communication delays.

This paper deals with the consensus problem of a group of agents with continuous-time linear dynamics, whose communi-

cation topology is a randomly switching network driven by a time-homogenous Markov process. Each communication pattern

(i.e., directed graph) corresponds to a state of the Markov process. Due to the introduction of time-varying delays and uncertain-

ties, the present approaches in [11–13,20,22,23] do not apply. Here, we show how the linear matrix inequality (LMI) method,

together with results inspired by stability analysis of Markovian jump linear systems, can be used to prove stochastic consensus

results. It is shown that the multi-agent system can reach mean square and almost sure consensus for appropriate time-varying

delays and topology uncertainties if the union of the topologies corresponding to the positive recurrent states of the Markov

process has a spanning tree and the agent dynamics is stabilizable. Our results are presented in terms of feasible linear matrix

inequalities, from which the maximal allowable upper bound of time-varying delays and uncertainties can be easily obtained by

using Matlab’s LMI Toolbox. The consensus gain is designed via a Riccati inequality, and the speed of consensus is also estimated.

Finally, we work out some numerical examples to illustrate the availability of our theoretical results. We mention that the LMI

method was used in [29] for system with random delays governed by a Markov chain, where the communication topology is,

nevertheless, fixed.

We mention that another topic closely related to consensus is the synchronization of complex networks, where the synchro-

nization stability of a network of oscillators is usually studied by using the master stability function method. The difference

between synchronization and consensus is that the former analyzes the case that the uncoupled systems have identical nonlin-

ear node dynamics which constitutes the ultimate synchronous trajectory, while the latter focuses on reaching an agreement

on some variable of interest through local interactions. Synchronization can be viewed as a generalization of consensus to en-

compass nonlinear dynamics. Recent works along this line include [30] and [31], where finite-time synchronization for complex

networks with Markov jump topology is studied. The LMI method was also used in [30] to determine sufficient synchronization

conditions. But the system therein is without time delay.

The rest of the paper is organized as follows. Section 2 contains the problem formulation. Section 3 presents the main results.

Section 4 gives simulation results and Section 5 concludes the paper.

Throughout this paper, the wildcard ∗ represents the elements below the main diagonal of a symmetric matrix. 1n and 0n

mean the n-dimensional column vectors of all ones and all zeros, respectively. In is an n × n identity matrix. We often suppress

the subscript n when the dimension is clear from the context. We say A > B (A ≥ B) if A − B is positive definite (semi-definite),

where A and B are symmetric matrices of same dimensions. AT means the transpose of the matrix A. For a vector x, ‖x‖ refers

to its Euclidean norm. The set of real numbers is denoted by R. Let 1E signify the indicator function of an event E. By A⊗B we

denote the Kronecker product of two matrices A and B, which admits the following useful properties: (A ⊗ B)(C ⊗ D) = AC ⊗ BD,

(A ⊗ B)−1 = A−1 ⊗ B−1, and (A ⊗ B)T = AT ⊗ BT .

2. Problem formulation

Let G = (V, E,A) represent a weighted directed graph of order N, where V = {v1, v2, . . . , vN} is the set of nodes, i.e., agents,

and E ⊆ V × V is the set of directed edges. A directed edge from node vi to node v j is denoted as an ordered pair (vi, v j), indi-

cating that the information can be sent from agent vi to agent v j . The weighted adjacency matrix A = (ai j) ∈ R
N×N is defined by

aij > 0 if (v j, vi) ∈ E, and ai j = 0 otherwise. din
i

= ∑N
j=1 ai j and dout

i
= ∑N

j=1 a ji are called in-degree and out-degree of agent vi,

respectively. G is said to be balanced if din
i

= dout
i

for all i = 1, . . . , N [3]. The graph Laplacian matrix associated with the graph G
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