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a b s t r a c t

Geometrically continuous (Gk) constructions naturally yield families of finite elements for iso-

geometric analysis (IGA) that are Ck also for non-tensor-product layout. This paper describes

and analyzes one such concrete C1 geometrically generalized IGA element (short: gIGA ele-

ment) that generalizes bi-quadratic splines to quad meshes with irregularities. The new gIGA

element is based on a recently-developed G1 surface construction that recommends itself by

its a B-spline-like control net, low (least) polynomial degree, good shape properties and re-

production of quadratics at irregular (extraordinary) points. Remarkably, for Poisson’s equa-

tion on the disk using interior vertices of valence 3 and symmetric layout, we observe O(h3)

convergence in the L∞ norm for this family of elements. Numerical experiments confirm the

elements to be effective for solving the trivariate Poisson equation on the solid cylinder, de-

formations thereof (a turbine blade), modeling and computing geodesics on smooth free-form

surfaces via the heat equation, for solving the biharmonic equation on the disk and for Koiter-

type thin-shell analysis.

Crown Copyright © 2015 Published by Elsevier Inc. All rights reserved.

1. Introduction

Isogeometric Analysis (IGA), as introduced in [13], is an isoparametric framework of numerical analysis that uses spline func-

tions to represent both the geometric domain and the approximate solution of a partial differential equation (PDE). Where the

partition of the geometric domain has irregularities, e.g. differs from the regular tensor-product spline lattice by having n = 3

or n > 4 quadrilateral domain pieces (patches) come together, the geometric design community has developed several exten-

sions of the tensor-product (NURBS) representation. The two most widely-used representations are geometrically continuous

(Gk) complexes of finitely many piecewise polynomial spline patches; and generalized subdivision surfaces that are defined

by an infinite sequence of nested Ck surface rings and whose pieces can be viewed as subdivision splines with singularities at

the irregular points [21]. Such subdivision splines have been used for finite element analysis as early as [8,9], but most re-

cently received renewed attention, this time from the IGA community [1,18]. Since subdivision splines are naturally refinable,

this approach is likely to gain a lot of traction once the computer-aided design community adopts subdivision into their design

flow.

This paper focuses on the alternative approach of building isogeometric elements from geometrically continuous surface

(Gk) constructions. This approach leverages the observation that any Gk construction yields Ck isogeometric finite elements by

composing a Gk analysis function with the inverse of an equally Gk-parameterized physical domain [18,20] (see also the linear

G1 reparameterization in [16]). Gk complexes built from polynomial or rational tensor-product spline patches or patches in the
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Bernstein–Bézier form (BB-form) are automatically compatible with the industrial NURBS exchange standard, one of the goals of

IGA [22,24].

In this paper, we specifically focus on a recently-developed G1 construction [15] that extends bi-quadratic (bi-2) splines to

more general quad meshes that can include non-4-valent points and multi-sided facets. The G1 construction defines n patches of

degree bi-3 in BB-form where n = 3 or n = 5 come together, respectively n patches of degree bi-4 where more than five patches

join. (This distinction between the valences near the regular case of n = 4 and higher valences is both geometrically motivated

and relevant in practice where the majority of irregularities are of valence 3 and 5.) The construction in [15] differs from the work

in [4,22,25] in that it does not require solving equations while constructing the physical domain: the domain and the elements

are modeled analogous to splines in B-spline form. That is, control points carry the geometric information and evaluation and

differentiation amount to explicit formulas in terms of the control points. Shape optimization is integrated into the explicit

formulas that relate the control net to their explicit piecewise Bézier representation. Rather than exploring the full space of

available G1 reparameterizations, as do two recent reports [4,14], we have selected a specific construction developed by careful

consideration of the space of low-degree G-constructions.

Besides the low degree, our interest in developing this construction was piqued by the fact that, in order to create good

reflection lines, the construction [15] offers high polynomial reproduction at the irregular points where n quadrilateral surface

pieces meet. This property, known in the geometric design community as flexibility, is desirable both to increase smoothness and

to ensure a rich gamut of shape. The observed numerical convergence shows that high flexibility is not only good for the surface

quality but also for the numerical approximation order of gIGA elements: For a symmetric tessellation of the disk using interior

vertices of valence 3 for Poisson’s equation, we observe O(h3) convergence of the error not only in the L2, but also in the L∞ norm.

This is in line with the optimal rate for bi-2 splines.

Overview. Section 2 reviews geometric continuity and Section 3 the derivation of the C1 isogeometric element from a G1 (sur-

face) construction. Section 4 reports the performance of our implementation on several benchmark problems, including Pois-

son’s equation (where smoothness of the elements is not needed), the heat equation on free-form surfaces (where smooth-

ness is needed to model the surface), the biharmonic equation and thin place analysis (where the solution requires smooth

elements).

2. Review of geometric continuity

Two Ck curve segments x1 : [0..1] → R and x2 : [0..1] → R join Gk at a common point x1(1) = x2(0) if, possibly after a change

of variables, derivatives match at the common point [5]. Generalizing this notion to edge-adjacent patches yields one of several

equivalent notions of geometric continuity of surfaces as explained in the survey of geometric continuity [19, Section 3].

A convenient definition for the general multi-variable setup uses the classical notion of a k-jet of an R
d-valued Ck map defined

on an open neighborhood of a point s ∈ R
m, m, d ≥ 1. This notion will help us to formally capture agreement of expansions of

two maps at a common point or a set of common points forming a shared interface between two regions. For our application,

d, m ∈ {2, 3}. For an integer k ≥ 1, the k-jet is an equivalence class on the set of pairs

Fs,d := {( f,N ) | N is an R
m−open neighborhood of s and f : N → R

d is Ck}.
For each m-tuple i := (i1, . . . , im) consisting of non-negative integers ij, define |i| := �ij and let ∂ i denote the |i|th-order partial-

differentiation operator ( ∂
∂x1

)i1 , . . . , ( ∂
∂xm

)im . The relation ∼k
s on Fs,d defined by

( f1,N1) ∼k
s ( f2,N2) if ∂i f1(s) = ∂i f2(s) for all i with |i| ≤ k,

is an equivalence relation, and the equivalence class of f under ∼k
s is the k-jet of f at s, denoted jk

s f . Note that |i| = 0 implies

f1(s) = f2(s). Composition of jets is well-defined, also for jets on half-spaces that are used in our context of piecemeal-defined

geometry.

The challenge addressed by geometric continuity is that the two maps whose jets are matched, each have their separate

parameter domains. A change of variables, the reparameterization ρ , is needed to relate them to one another. More formally,

for α = 1, 2, let �α ⊂ R
m be an m-dimensional polytope, for our applications a unit square or cube, and let Eα be an (m−1)-

dimensional facet of �α, with interior int(Eα) =
◦

Eα where
◦
P denotes the interior with respect to the smallest space enclosing

P. For our scenario, Eα is the interval [0, . . . , 1] when m = 2 and its tensor [0..1]2 when m = 3. Then, following [12], we define

ρ : N1 → N2 to be a Ck diffeomorphism between two open sets N1, N2 ⊂ R
m that enclose

◦
E1 and

◦
E2 respectively such that

ρ(
◦

E1 ) =
◦

E2, ρ(N1∩ ◦
�1 ) = N2 \�2 and ρ(N1 \�1) = N2∩ ◦

�2.

With the help of the reparameterization ρ , we can relate the two maps and define a Gk relation as follows. Let xα : �α ⊂
R

m → R
d, α ∈ {1, 2} be Ck maps for which

x2(ρ(s)) = x1(s) for all s ∈
◦

E1;
the images of the xα therefore join along a common interface E := x2(E2) = x1(E1). We say that x1 joins x2 Gk with reparameteri-

zation ρ along E if for every s ∈
◦

E1 we have

jk
sx1 = jk

s(x2 ◦ ρ), (1)
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