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a b s t r a c t

Invariant measures of iterated function systems and refinable functions are mathematical

tools of vast usage, that, although usually considered in different contexts, are deeply linked.

We outline these links, in particular with respect to existence and regularity of these objects.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The importance in applications of real functions solving a refinement equation has led many authors to study their existence

and properties. A partial list of these applications covers fractal interpolation, subdivision in Computer-Aided Geometric Design

(CAGD) and attractors of iterated functions systems (IFSs), as considered for example in [2,12,25,45]. In many of these applications

only the existence of an integral operator is required [6,14] so that L1 regularity of refinable functions has been explored widely.

Successively, in [33] the concept of refinability has been generalized to functionals. This is clearly related to previous works on

the weak convergence of the subdivision process [21] and the existence of refinable distributions [14,17]. In these studies, the

focus has shifted from refinable functions to refinable distributions.

In parallel, the study of IFSs [1,30] considers invariant measures satisfying a balance equation that is easily seen to be the dual

of a functional refinement condition. Because of its original application to image processing, regularity of invariant measures is

a theoretical problem that has received less attention. A remarkable exception to this state of things is provided by the study of

Bernoulli convolutions [26,41,44], where the main theoretical question to be answered is about the absolute continuity versus

singularity of the invariant measure. A renewed interest in this question has been brought recently by the study of IFS with

uncountably many maps [36,37]: preliminary results on a specific example show that a transition from singular behavior to

absolute continuity and to increasing regularity of the density of an IFS measure takes place as a parameter is varied. Crucial for

our aim, this density is a refinable function.
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We can therefore appreciate that, whether going from refinable functions to functionals and distributions, or from IFS mea-

sures to their densities, we are in the presence of common problems, although expressed in different mathematical jargon. The

scope of this paper is to outline as simply as possible the translation language between the two approaches, and to expose the

main results that can be useful to carry from one side to the other, like e.g the techniques for the evaluation of the integrals

[8,9,11,32,35]. Some previous work in this direction can be found in [34,40].

The plan of this paper is the following: In the next section we introduce the basic definitions of refinable functions and

iterated function systems, and in Section 3 we show how to link one concept to the other. Formal manipulations are presented

in Section 4, that are used in the central Section 5, where existence and uniqueness of these mathematical objects is discussed.

The particular case of lattice equations is briefly reviewed in Section 6 and a few significant examples are proposed in Section 7.

2. Preliminary definitions

In the present work we will deal with applications Tπ, α, β: X → X in a functional space X, defined by

Tπ,α,β( f ) :=
∑
n∈Z

πn f (αnx + βn) , f ∈ X. (2.1)

Here αn, βn and πn are real numbers. The space X where these applications act can be any of Lp, C∞
0

(we will denote by K the

support of the function) or the space of bounded non-decreasing (eventually continuous) functions, depending on the case at

hand. In all cases we deal with univariate function on R. Linear combinations as in the above equation arise in many applications.

The first definition that we need to recall considers the application of Eq. (2.1) to refinable functions.

Definition 2.1 (Refinable functions). A function φ is called refinable if it solves the fixed point problem:

φ = Tπ,α,β(φ). (2.2)

In the context of refinement equations the above is usually indicated as Functional Equation, see [5, equation (4.12)], and the

vector {πn} is called a mask.

The most studied case is the one where the mask has a finite number of non-null entries. In this case, without loss of gener-

ality, one can write the previous equation as:

φ(x) =
N∑

n=1

πnφ(αnx + βn). (2.3)

The existence of a solution of Eq. (2.3) is easily assessed in the space of distributions, under mild hypotheses. Much harder is to

prove further regularity of this solution. This problem has been widely studied, as we will see later on. Since linearity implies that

all multiples of a solution φ(x) are also solutions, a further condition, such as ‖φ‖ = 1, must be imposed to obtain uniqueness.

Let us now define iterated function system (IFS) and their invariant measures [1–4]. These too are constructed as fixed points

of an operator, that depends on a set of maps {Sn} on a compact set K, typically, but not necessarily, included in R. Let M(K) be

the space of Borel regular measures having bounded support K and mass equal to one, as in [30]. Also, let S be the operator from

M(K) to itself defined as

S(σ )(E) :=
N∑

n=1

pnσ (S−1
n (E)), (2.4)

for any σ–measurable set E.

Definition 2.2 (IFS Invariant Measures). A measure μ with support in K ⊂ R is invariant for an IFS if there exists a collection of

injective maps Sn : K → K, n = 1, . . . , N and a set of probabilities pn, n = 1, . . . , N,

0 < pn < 1,

N∑
n=1

pn = 1 (2.5)

so that

μ = S(μ), i.e.μ(E) =
N∑

n=1

pnμ(S−1
n (E)) for every Borel set E. (2.6)

If the applications Sn are contractive, existence and uniqueness of the invariant measure is guaranteed [30, Theorem 4.4.1].

These conditions can be somehow relaxed [38] as we will see below.

Eq. (2.6) is sometimes called a balance equation and μ a balanced measure (that is therefore used as a synonymous of invari-

ant). Consider now the transformations Sn. While in refinement equations almost invariably the affine maps αnx + βn has been

considered, non-linear IFS maps Sn have also been studied [3]. Yet, the particularly simple case Sn(x) := anx + bn turns out to be

quite versatile and useful. In this case, the operator in Eq. (2.6) will be labeled as Sp,a,b. The inverse maps S−1
n correspond to the
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