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a b s t r a c t

In this paper, we consider a generalized indefinite block triangular preconditioner for the gen-

eralized saddle point problems. The eigenvalue analysis of the preconditioned matrix is given,

which generalizes the existing results in the literature. Some corrections to the theoretical

or numerical results in the previously published works are also presented. Numerical experi-

ments are provided to confirm the bounds for the eigenvalues of the preconditioned matrix,

and illustrate the efficiency of the preconditioned GMRES.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Consider the generalized saddle point problem

A
[

x
y

]
=

[
A BT

B −C

][
x
y

]
=

[
f
g

]
, (1.1)

where A ∈ R
n×n is symmetric positive definite, B ∈ R

m×n(m ≤ n) is of full row rank, and C ∈ R
m×m is symmetric positive semidef-

inite, and f ∈ R
n and g ∈ R

m are two column vectors. Systems of the form (1.1) frequently arise in computational science and

engineering applications such as computational fluid dynamics [8], constrained optimization [20], parameter identification [12],

mixed finite element approximation of elliptic PDEs [5,14,18], and others. Krylov subspace methods together with various pre-

conditioners are recommended for the saddle point problems in large scale. In the passed decades, there are lots of work on this

topic, including block diagonal preconditioner [9,15,16,18], block triangular preconditioner [7,10,13,19,22,24], HSS preconditioner

[1,2,4], constraint preconditioner [3,6,11], matrix splitting preconditioner [21] and so on.

Recently, Simoncini [19] and Cao [7], respectively, proposed the block triangular preconditioners P− = [Â BT

O −Ĉ
] and P+ = [Â BT

O Ĉ
],

together with a Krylov subspace iterative method for solving (1.1), where Â ∈ R
n×n and Ĉ ∈ R

m×m are symmetric positive definite.

Spectral properties of the preconditioned matrices AP−1
− and AP−1

+ were investigated in [7,19]. By introducing the parameter ω
to the submatrix BT of the block triangular preconditioners P− and P+, Jiang et al. considered in [10] two parameterized block

triangular preconditioners as follows

P̂− =
[

Â ωBT

O −Ĉ

]
and P̂+ =

[
Â ωBT

O Ĉ

]
.
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Similarly, Wu et al. [22] applied the following parameterized block triangular preconditioner

P̃ =
[

Â BT

O jĈ

]
, ( j �= 0)

for the linear system (1.1). A special case of P̃ when j < 0 was studied in [23–25]. The ideas of [10] and [22] were combined in

[13], resulting in the generalized block triangular preconditioner

P̂ =
[

Â ωBT

O jĈ

]
. (1.2)

If j > 0, all the eigenvalues of the preconditioned matrix AP̂−1 are real. The eigenvalue estimates for AP̂−1 were provided, which

improve some theoretical results appeared in the previous works such as [7,10]. When j < 0, the bounds for the real part of all

the eigenvalues of AP̂−1 were mainly discussed. Indeed, the eigenvalues of AP̂−1 with negative j may be real or complex, and the

eigenvalue distribution of the real or complex eigenvalues was not fully investigated in [13].

The aim of this paper is to further consider the eigenvalue analysis of the generalized block triangular preconditioner for the

saddle point problems, and to complement the theoretical results in [13]. We focus on the generalized indefinite block triangular

preconditioner for solving (1.1), that is

P =
[

Â ωBT

O − jĈ

]
,ω > 0 and j > 0. (1.3)

The eigenvalue estimates for the real and imaginary parts of all the complex eigenvalues of the preconditioned matrix AP−1

are provided, which generalize the theoretical results in [6,25]. Some inaccuracies in [25] are pointed out, and correct results

are presented. We also give the bound for the real eigenvalues of the preconditioned matrix that is not touched in [13]. For the

special case when C = 0, we provide the more refined bounds on the complex eigenvalues of AP−1. Choosing appropriate ω in

the block triangular preconditioner P, only real eigenvalues exist for AP−1. The sufficient conditions for this case are presented,

and the tight bounds for all the real eigenvalues are given, see Corollary 2.4. Numerical experiments of two examples are given.

We present the bounds for the real or complex eigenvalues of the preconditioned matrix AP−1 to confirm the theoretical analysis.

We also illustrate the efficiency of the preconditioned GMRES with the generalized block triangular preconditioner, based upon

the eigenvalue analysis presented in Section 2. Finally, we give the conclusions.

2. Eigenvalue analysis of the preconditioned matrix AP−1

Let us consider an eigenvalue λ and the corresponding eigenvector [u; v] of AP−1, that is,

AP−1

[
u
v

]
= λ

[
u
v

]
.

Denote [ũ
ṽ] = P−1[u

v], the above eigenvalue problem can be equivalently rewritten as

A
[

ũ
ṽ

]
= λP

[
ũ
ṽ

]
. (2.1)

Let D̂ = [Â
1
2 O

O
√

jĈ
1
2

] and [ũ
ṽ] = D̂−1[û

v̂], then (2.1) is equivalent to

D̂−1AD̂−1

[
û
v̂

]
= λD̂−1PD̂−1

[
û
v̂

]
or [

Â− 1
2 AÂ− 1

2
1√

j
Â− 1

2 BTĈ− 1
2

1√
j
Ĉ− 1

2 BÂ− 1
2 − 1

j
Ĉ− 1

2 CĈ− 1
2

][
û
v̂

]
= λ

[
I ω√

j
Â− 1

2 BTĈ− 1
2

O −I

][
û
v̂

]
. (2.2)

Let Ã = Â− 1
2 AÂ− 1

2 , B̃ = 1√
j
Ĉ− 1

2 BÂ− 1
2 , and C̃ = 1

j
Ĉ− 1

2 CĈ− 1
2 , we can simplify (2.2) as the following generalized eigenvalue

problem[
Ã B̃T

B̃ −C̃

][
û
v̂

]
= λ

[
I ωB̃T

O −I

][
û
v̂

]
. (2.3)

In the following discussion, for a complex eigenvalue λ, we use R(λ) and I(λ) to denote its real and imaginary parts, respec-

tively. By Lemma 1 in [6], we have the following lemma about the matrix (Ã − λI)−1 that is required for our analysis later.
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