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a b s t r a c t

Stability, convergence and application of radial basis function finite difference (RBF-FD)

scheme is studied for solving the reaction–diffusion equations (RDEs). We show that the ex-

plicit RBF-FD method is stable, and stability condition depends on the shape parameter of

related radial basis function.The generalized multiquadric (GMQ) is applied as radial basis

function and weight coefficients are explicitly presented for equispaced node distribution.

Also, two methods are presented to compute the optimal shape parameter. The combination

of these methods with the GMQ-FD method will produce two efficient algorithms for numeri-

cal solution of RDEs: the variable GMQ-FD (VGMQ-FD) and the constant GMQ-FD (CGMQ-FD).

We test the scheme on traveling wave and compare its accuracy with the conventional finite

difference method (FDM).

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Mairhuber–Curtis showed that to reconstruct multivariate function from scattered data at N distinct nodes {x1, x2, . . . , xN} in

domain � ⊆ R
s (s ≥ 2), there exist no Haar spaces of continuous functions [16]. For example, if we choose s-variate polynomials

space of degree less than k (
∏

k (Rs)) then existence and uniqueness of interpolation polynomial depends on both space dimen-

sion (N ≤ dim(
∏

k (Rs))) and arrangement of nodes in domain [12]. The latter leads to the special meshes generation on domain

� which is still a time consuming process, arduous and fraught with pitfalls. Hence, application of the classical polynomial-based

methods (such as FDM, FEM and FVM), which are also listed in the category of mesh-based methods, has faced with restrictions

for numerical solution of PDEs.

To get rid of the above problems, the Mairhuber–Curtis theorem suggests that the interpolation space should be node depen-

dent. Radial basis functions (RBFs) provide this condition [16]. RBFs are conditionally positive definite of order m ≥ 0 which all

their linear combinations with the possible addition of a polynomial term generate an interpolation space. This space guarantees

existence of unique interpolation function for arbitrary data at N distinct nodes. Therefore, a RBF facilitates the evaluation of the

interpolant without using a mesh. In addition to the approximation theory, RBFs are growing in popularity for solving partial

differential equations [14,20–22,36,38]. In some of RBFs-based methods, the accuracy of method generally increases for flat RBF.

This is very unfortunate because in the case of flat, the interpolation matrix is very ill-conditioned. But the numerical results

illustrate this disadvantage depends on both underlying PDE and the associated method. That is, there may exist a RBF-based
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method or a PDE such that either not sensitive to the shape parameter or optimal shape parameter occurs in small values. Among

the methods we can mention to RBF-FD method, which combines the formulation simplicity of FDM and the meshfree property

of RBF. This method was proposed by Shu et al. [37]. Also, Wright [41] and Tolstykh and Shirobokov [39] introduced this method

independently and approximately at the same time to solve the ODEs and elasticity problems, respectively. For flat RBF, Wright

and Fornberg [42] showed that RBF-FD method is equivalent to the conventional finite difference scheme. Bayona et al. [6,7]

proposed two methods to compute the optimal shape parameter of MQ-FD method for solving ordinary and time-independent

partial differential equations. In some literature the RBF-FD method is used with other names such as local radial basis function

method [35] and local radial basis functions based differential quadrature collocation method [15].

In this work, we apply the RBF-FD method for numerical study reaction–diffusion equations. A reaction–diffusion equation

comprises a reaction term and a diffusion term, i.e. the typical form is as follows:

ut = uxx + f (u), (1)

where u = u(x, t) is a state variable and describes density/concentration of a substance, a population, ...at position x ∈ � ⊂ R and

at time t. So the first term on the right hand side describes the “diffusion”. The second term, f(u), is a smooth function f : R → R

and describes processes with really change the present u, i.e. something happens to it (birth, death, chemical reaction, ...) [24].

We assume the nonlinear term f(u) satisfies the Lipschitz condition | f (u1) − f (u2)| ≤ L|u1 − u2|.
Such equations appear in many applications [25]: the choice f (u) = u(1 − u) yields Fisher’s equation that was originally used

to describe the spreading of biological populations [18], the Newell–Whitehead–Segel equation with f (u) = u(1 − u2) to describe

Rayleigh–Benard convection [33], the Nagumo equation with f (u) = u(1 − u)(u − α) and 0 < α < 1 has been obtained as one

of the set of equations modeling the transmission of electrical pulses in a nerve axon [32], and f (u) = u2 − u3 yields Zeldovich

equation that arises in the combustion theory [19].

Exact solutions for the reaction–diffusion equations were given by Feng et al. [17] using means of the Cole–Hopf transforma-

tion and the Lie symmetry method, Li and Guo [29] by the first integral method, Abbasbandy [1] using the homotopy analysis

method and Ağrseven and Özis [2] by homotopy perturbation method. Also Kudryashov [26,27] presented two new methods

for finding exact solutions of Eq. (1). However , as in many of the applications considered in [31], f(u) is non-linear, then it is

not usually possible to obtain general exact analytical traveling wave solutions. Hence, some numerical methods have been ap-

plied to give the approximate solution for the reaction–diffusion problems [30]. For numerical research on Eq. (1), we can refer

to works of Al-Khaled [3] by the Sinc collocation method, Uddin [40] using the nodal integral scheme, Chen et al. [11] by non-

standard finite difference methods, Dehghan and Fakhar-Izadi [13] using pseudospectral methods, Bastani and Salkuyeh [4] by

a sixth-order compact finite difference (CFD6) scheme, Gorder and Vajravelu [23] by a variational technique, Bhrawy [9] by a

Jacobi–Gauss–Lobatto collocation method, Li and Ding [28] by a higher order finite difference method and Ramos [34] using

exponential methods.

The rest of this paper is divided into five sections. The GMQ-FD scheme is briefly reviewed in Section 2. Two algorithms

VGMQ-FD and CGMQ-FD are developed for the RDEs in Section 3 and their convergence and stability conditions are obtained.

Section 4 is devoted to the numerical results and discussion. Section 5 summarizes the paper.

2. GMQ-FD method and its weight coefficients

Given a point set X = {x1, . . . , xN}, derivatives of function u(x) can be evaluated approximately using only function values at

the nodes [8]:

u(m)(xi) 	 ũ(m)(xi) =
ni∑

i=1

w(m)
i j

u(x j), (2)

where ni is the number of nodes in support domain of ith node.

The key point in above formulae is the obtaining weight coefficients w
(m)
i j

. In classic finite difference method (FDM), the

polynomials are used as test functions for this work.

In spite of low cast and easy performance for the nonlinear equations, due to requirement of mesh generation on the domain,

the computational cost of FDM is relatively high for problems with complex geometry in the high dimensions [16].

To eliminate disadvantages of FDM, Shu et al. [37] used RBFs as test function instead of polynomials. Hence, the relation (2)

changes to the following form:

ϕ(m)(‖xi − xk‖) =
ni∑

j=1

w(m)
i j

ϕk(xi j
); k = i1, . . . , ini

, (3)

where ϕ is a radial basis function and ϕk(xi j
) = ϕ(‖xi j

− xk‖). The common choices for RBFs are listed in Table 1. We can write

the relation (3) in the matrix form as �(m)
ni

= Ani
w

(m)
ni

, where

�(m)
ni

=
[
ϕ(m)

i1
(xi) ϕ(m)

i2
(xi) . . . ϕ(m)

ini

(xi)
]T

,
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