A family of ternary subdivision schemes for curves

CrossMark

Kashif Rehan ${ }^{\text {a,b,*, }}$ Shahid S. Siddiqi ${ }^{\text {b,c }}$
${ }^{\text {a }}$ Department of Mathematics, University of Engineering and Technology, KSK Campus, Lahore, Pakistan
${ }^{\mathrm{b}}$ Department of Mathematics, University of Punjab, Lahore, Pakistan
${ }^{\text {c }}$ Abdus Salam School of Mathematical Sciences, Government College University, Lahore, Pakistan

A R T I C L E I N F O

MSC:

41A05
41A25
41A30
65D17
65D10

Keywords:

Ternary
Subdivision scheme
Approximating and interpolating
Mask
Curves

Abstract

A family of ternary 3-point subdivision schemes is introduced and has a degree of smoothness C^{1} continuity. A family of ternary 4 -point subdivision schemes is derived and has degrees of smoothness C^{1} and C^{2} continuities. Also a ternary 4 -point approximating subdivision scheme is proposed that generates the limiting curve of C^{3} continuity. The eigenvalue analysis and generating function formalism are used to analyze the continuity properties of these subdivision schemes. Also these subdivision schemes are compared with the established subdivision schemes.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Most work in the field of subdivision schemes has considered binary and ternary subdivision schemes. Subdivision schemes [2,3,8,13] provide useful methods for the creation of curves from the original data points.

In literature, a lot of papers have been published during the last decades. Dubuc [5] and independently Dyn et al. [8] proposed a binary 4-point interpolating subdivision scheme that generates the C^{1} limiting curve. Deslauriers and Dubuc [3] analyze binary $2 N$-point subdivision schemes derived from polynomial interpolation. Weissman [16] introduced a binary 6-point interpolating subdivision scheme that generates the C^{2} limiting curve. Hassan and Dodgson [9] derived ternary 3-point interpolating subdivision scheme that generates the C^{1} limiting curve and ternary 3-point approximating subdivision scheme that generates the C^{2} limiting curve. Siddiqi and Rehan [14] introduced a ternary 3-point approximating subdivision scheme that generates the C^{2} limiting curve. Hassan et al. [10] developed a ternary 4-point interpolating subdivision scheme that generates C^{2} limiting curves for the certain range of tension parameter. Siddiqi and Rehan [15] proposed a ternary 4-point interpolating subdivision scheme that generates the C^{1} limiting curve. Ko et al. [12] presented a ternary 4-point approximating subdivision scheme that generates C^{2} limiting curve. Beccari et al. [1] introduced a non-stationary ternary 4-point interpolating subdivision scheme that generates C^{2} limiting curve with a single tension parameter.

[^0]
2. The subdivision schemes

Hassan and Dodgson [9] proposed a ternary 3-point interpolating subdivision scheme. The mask of the subdivision scheme [9] for the tension parameter $b=\frac{5}{18}$ is defined as

$$
\alpha=\left[\ldots, \frac{-1}{18}, 0, \frac{5}{18}, \frac{7}{9}, 1, \frac{7}{9}, \frac{5}{18}, 0, \frac{-1}{18}, \ldots\right]
$$

It has been proved that the ternary 3-point subdivision scheme generates the interpolating C^{1} limiting curve.
In this paper, a ternary 3-point subdivision scheme is derived using the tension parameter in refinement rule $p_{3 i}^{k+1}$ as

$$
\begin{equation*}
\alpha=\left[\ldots, \frac{-1}{18}, \mu, \frac{5}{18}, \frac{7}{9},(1-2 \mu), \frac{7}{9}, \frac{5}{18}, \mu, \frac{-1}{18}, \ldots\right] . \tag{2.1}
\end{equation*}
$$

The proposed ternary 3-point subdivision scheme generates an interpolating and approximating C^{1} limiting curves for the different value of tension parameter μ.

The proposed ternary 3-point subdivision scheme generates an interpolating and approximating C^{1} limiting curves for the different value of tension parameter μ.

Hassan et al. [10] developed a ternary 4-point interpolating subdivision scheme. The mask of the ternary 4-point subdivision scheme [10] for the tension parameter $\mu=\frac{1}{11}$ is

$$
\alpha=\left[\ldots, 0, \frac{-4}{99}, \frac{-7}{99}, 0, \frac{34}{99}, \frac{76}{99}, 1, \frac{76}{99}, \frac{34}{99}, 0, \frac{-7}{99}, \frac{-4}{99}, 0, \ldots\right]
$$

It has been proved that the ternary 4 -point subdivision scheme generates the interpolating C^{2} limiting curve.
In this paper, a ternary 4-point subdivision scheme is proposed using the tension parameter in refinement rule $p_{3 i}^{k+1}$ as

$$
\begin{equation*}
\alpha=\left[\ldots,-\mu, \frac{-4}{99}, \frac{-7}{99}, 4 \mu, \frac{34}{99}, \frac{76}{99},(1-6 \mu), \frac{76}{99}, \frac{34}{99}, 4 \mu, \frac{-7}{99}, \frac{-4}{99},-\mu, \ldots\right] . \tag{2.2}
\end{equation*}
$$

The mask of the refinement rule $p_{3 i}^{k+1}$, using Lemma 2.2 of [11], is derived as

$$
p_{3 i}^{k+1}=\sum_{j=-2}^{2} L_{j}(0) p_{j}^{k}
$$

where

$$
L_{j}(0)=\delta_{j, 0}-\mu \prod_{k=-2, k \neq j}^{2} \frac{-2-k}{j-k}
$$

The proposed ternary 4-point subdivision scheme generates interpolating and approximating C^{2} limiting curves for the different value of tension parameter μ.

Also a new ternary 4-point approximating subdivision scheme is introduced using cubic B-spline basis functions. Calculate the refinement rules $p_{3 i}^{k+1}, p_{3 i+1}^{k+1}$ and $p_{3 i+2}^{k+1}$ at $\frac{1}{6}, \frac{1}{2}$ and $\frac{5}{6}$ respectively. The mask of the subdivision scheme is defined as

$$
\begin{equation*}
\alpha=\left[\ldots, \frac{1}{1296}, \frac{1}{48}, \frac{125}{1296}, \frac{113}{432}, \frac{23}{48}, \frac{277}{432}, \frac{277}{432}, \frac{23}{48}, \frac{113}{432}, \frac{125}{1296}, \frac{1}{48}, \frac{1}{1296}, \ldots\right] . \tag{2.3}
\end{equation*}
$$

3. Convergence analysis-necessary conditions

Matrix formalism allows us to derive necessary conditions for a subdivision scheme to be C^{m} based on the eigenvalues of the subdivision matrices. Suppose the eigenvalues are λ_{i}, where $\lambda_{0}=1$ and $\left|\lambda_{i}\right| \geq\left|\lambda_{i+1}\right|$, for all $i \in N$. Then following Doo and Sabin [4] terminology, we can check the smoothness of the proposed subdivision schemes.

Consider the original vertices $\{A, B, C, D, E, F\}$ and the new vertices $\{a, b, c, d, e, f\}$, the subdivision matrix form of the ternary 3-point subdivision scheme (2.1) along the vertex is

https://daneshyari.com/en/article/4626233

Download Persian Version:
https://daneshyari.com/article/4626233

Daneshyari.com

[^0]: * Corresponding author at: Department of Mathematics, University of Engineering and Technology, KSK Campus,Lahore, Pakistan.

 E-mail addresses: kkashif_99@yahoo.com (K. Rehan), shahidsiddiqiprof@yahoo.co.uk (S.S. Siddiqi).

