
Microprocessors and Microsystems 40 (2016) 45–52

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Low space-complexity and low power semi-systolic multiplier

architectures over GF(2m) based on irreducible trinomial

Fayez Gebali a, Atef Ibrahim a,b,c,∗

a University of Victoria, Victoria, BC, Canada
b Prince Sattam Bin AbdulAziz University, Alkharj, Saudi Arabia
c Electronics Research Institute, Cairo, Egypt

a r t i c l e i n f o

Keywords:

Trinomial multiplier

Finite field multiplication

Systolic arrays

Parallel architectures

Pipeline processing

VLSI

a b s t r a c t

This paper proposes a three bit-serial and digit-serial semi-systolic GF(2m) multipliers using Progressive Prod-

uct Reduction (PPR) technique. These architectures are obtained by converting the GF(2m) multiplication al-

gorithm into an iterative algorithm using systematic techniques for scheduling the computational tasks and

mapping them to Processing Elements (PE). Three different semi systolic arrays were obtained. ASIC imple-

mentation of the proposed designs and previously published schemes were used to verify the performance

of the proposed designs. One proposed design has at least 29% lower area compared to previously published

bit/digit serial multipliers. This design has also at least 70% lower power compared to previously published

bit/digit serial multipliers. Another proposed design has at least 12% lower power-delay product (PDP) com-

pared to previously published bit/digit serial multipliers. This makes the proposed designs more suited to

resource-constrained embedded applications.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Efficient arithmetic operations in finite fields are important in

many applications, including coding theory, computer algebra sys-

tems, information theory, number theory, and public-key cryptosys-

tems e.g., elliptic curve cryptosystems (ECC) [1]. Multiplication over

GF(2m) is the basic field operation which is frequently encountered

in most of these applications. In the literature, there are many multi-

pliers with different bases, e.g., polynomial basis, normal basis, and

dual basis. Numerous hardware architectures have been proposed

for polynomial-basis finite-field multiplication over GF(2m) [2–28].

In terms of design style, all of these architectures can be classified

into two basic forms. The first form is systolic or semi-systolic archi-

tecture and the second form is nonsystolic architecture. Nonsystolic

designs aim to reduce the number of partial products to realize the

multipliers with the least hardware and shortest latency [2–9]. On

the other hand, the systolic architecutres [10–29] posses a lot of ad-

vantages over the nonsystolic ones due to the following reasons: pro-

cessor element (PE) modularity, interprocessor communication reg-

ularity and locality, simple PE control, and high-throughput rates due

to piplelining [28–30].

∗ Corresponding author Prince Sattam Bin Abdulaziz University, Alkharj, Saudi

Arabia. Tel.: +96 6546825905.

E-mail addresses: fayez@ece.uvic.ca (F. Gebali), atef@ece.uvic.ca,

attif_ali2002@yahoo.com (A. Ibrahim).

There are five main contributions in this work. (1) We propose

a new multiplication technique in GF(2m) that starts by performing

the reduction operation on the most significant partial product pro-

gressing to the lower-order partial products. (2) We provide formal

linear and nonlinear techniques for scheduling the operations of the

multiplication algorithm. (3) We provide formal linear and nonlin-

ear techniques for assigning the operations of the multiplication al-

gorithm to processors. (4) we proposed several semi-systolic archi-

tectures over GF(2m) based on irreducible trinomial using Progres-

sive Product Reduction (PPR) technique. (5) We verified the perfor-

mance of the proposed designs and the other published designs by

ASIC implementations of all designs. The ASIC implementations’ re-

sults show that the proposed designs have lower area and power

that makes them more suited to resource-constrained embedded

applications.

The rest of the paper is organized as follows: Section 2 discusses

finite field multiplication over GF(2m) based on irreducible trinomi-

als. Section 3 discusses converting the trinomial based field multi-

plier algorithm to an iterative multiplication algorithm using Progres-

sive Product Reduction (PPR) technique. Section 4 shows how to par-

allelize the PPR iterative multiplication algorithm using linear data

scheduling and using linear and nonlinear assignment of computa-

tion task to PEs. Section 5 discusses design space exploration for the

PPR iterative multiplication algorithm. Section 6 discusses the com-

plexity of the proposed designs as well as that of previously published

designs. Finally, Section 7 provides the conclusions of this work.

http://dx.doi.org/10.1016/j.micpro.2015.11.016

0141-9331/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.micpro.2015.11.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2015.11.016&domain=pdf
mailto:fayez@ece.uvic.ca
mailto:atef@ece.uvic.ca
mailto:attif_ali2002@yahoo.com
http://dx.doi.org/10.1016/j.micpro.2015.11.016

46 F. Gebali, A. Ibrahim / Microprocessors and Microsystems 40 (2016) 45–52

2. Problem formulation

A finite field over GF(2m) could be defined using the irreducible

polynomial:

Q(x) = xm + qm−1xm−1 + · · · + q2x2 + q1x + 1 (1)

where qi ∈ GF(2) for 0 ≤ i ≤ m. In this paper we consider trinomial

irreducible polynomials of the form

Q(x) = xm + xk + 1 (2)

This form represents two of the five GF(2m) field polynomials recom-

mended by the National Institute of Standards and Technology (NIST)

for ECC [31]. The two values of the pair m and k are m = 233, k = 73

or m = 409, k = 87. This motivated several systolic implementations

using these polynomials [6–9,28].

The two field elements A and B to be multiplied are represented

by the polynomials:

A =
m−1∑
i=0

ai α
i (3)

B =
m−1∑
j=0

bj α
j (4)

where α is a root of Q(x), ai and bj ∈ GF(2) for 0 ≤ i, j < m. Since α is a

root of Q(x), we can write Q(α) using (2) in the form:

Q(α) = αm + αk + 1 = 0 (5)

or:

αm = αk + 1 (6)

After the modulo operation, the product C will be m-bits long and is

given by:

C = A × B mod Q(α)

=
[

m−1∑
i=0

m−1∑
j=0

ai b j α
i+ j

]
mod Q(α) (7)

=
m−1∑
k=0

ck αk (8)

where ck represents bit k of the product C. It is not practical to per-

form the modulo operation on the polynomial in (7) whose degree is

2m − 2. Since the modulo operation is distributive, we can write (7)

in the form:

C =
m−1∑
i=0

bi[αiA mod Q(α)] (9)

=
m−1∑
i=0

[Ci mod Q(α)] (10)

We note from (9) or (10) that each partial product Ci is a polynomial

of degree m + i − 1. More specifically, partial product Ci is given by

Ci = biα
iA mod Q(α) (11)

Each partial product Ci is a polynomial of degree m + i − 1 that must

be reduced before the addition operation is performed, which is not

too practical. Since the addition operation is associative, we itera-

tively perform the reduction operation on the different powers of the

partial product Ci (11). We call this method Progressive Product Re-

duction (PPR) as will be explained below.

3. Progressive Product Reduction (PPR) technique

We convert (9) or (10) into an iteration using decreasing powers of

the summation index i. Our strategy is to use Theorem 1 in the sequel

to reduce the degree term Ci by one so we can add it to the adjacent

lower degree term Ci−1. We can write Eq. (11) in the following form:

C = 〈C0 + α〈C1 + α〈C2 + · · · + α〈Cm−2 + αCm−1〉 · · · 〉〉 (12)

where

〈Ci + αCi+1〉 ≡ Ci + [αCi+1 mod Q(α)] (13)

The expression in (12) can be expressed iteratively as

Çm = 0 (14)

Çi =
〈
Ci + αÇi+1

〉
(15)

0 ≤ i < m

C = Ç0
(16)

where Çi is the intermediate value of the iteration at step i. Notice

from (15) that we reduce a polynomial Çi+1 of degree m + i to another

one of degree m + i − 1.

The theorem below shows how a polynomial of degree i + 1 ≥ m

can be reduced to a polynomial of degree i using the irreducible poly-

nomial Q(α) in Eq. (6).

Theorem 1. Assume an m-term polynomial with degree l + m − 1 of a

form similar to one of the partial products in (7) or (8):

P(α) = αl
m−1∑
i=0

qiα
i (17)

We can reduce the order of this polynomial by one using Eq. (6).

Proof. We can write P(α) in (17) in the form:

P(α) = αl−1
m−1∑
i=0

qiα
i+1 (18)

We make use of the expression for αm in (6) in (18) to get:

P(α) = αl−1

[
qm−1

(
αk + 1

)
+

m−1∑
i=1

qi−1α
i

]
(19)

Thus the input polynomial P(α) has now been reduced by one as re-

quired.

�

From (14)–(16) and (19) we can arrive at the bit-level iterations for

our PPR algorithm as:

cm
j = 0 (20)

ci
j = ci+1

j−1
+ bia j,

j 	= 0, k (21)

ci
j = ci+1

j−1
+ bia j + ci+1

m−1,

for j = 0, k (22)

c j = c0
j (23)

In the above equations it was assumed that

c−1
j

= 0, for 0 ≤ j < m (24)

where the term c−1
j

represents the jth bit of the partial product at the

start of iterations.

Download English Version:

https://daneshyari.com/en/article/462625

Download Persian Version:

https://daneshyari.com/article/462625

Daneshyari.com

https://daneshyari.com/en/article/462625
https://daneshyari.com/article/462625
https://daneshyari.com

