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a b s t r a c t

We investigate strong approximation of solutions of scalar stochastic differential equations

(SDEs) with irregular coefficients. In Przybyłowicz (2015) [23], an approximation of solutions

of SDEs at a single point is considered (such kind of approximation is also called a one-point

approximation). Comparing to that article, we are interested here in a global reconstruction of

trajectories of the solutions of SDEs in a whole interval of existence. We assume that a drift

coefficient a : [0, T ] × R → R is globally Lipschitz continuous with respect to a space variable,

but only measurable with respect to a time variable. A diffusion coefficient b : [0, T ] → R is

only piecewise Hölder continuous with Hölder exponent ϱ ∈ (0, 1]. The algorithm and results

concerning lower bounds from Przybyłowicz (2015) [23] cannot be applied for this problem,

and therefore we develop a suitable new technique. In order to approximate solutions of SDEs

under such assumptions we define a discrete type randomized Euler scheme. We provide the

error analysis of the algorithm, showing that its error is O(n− min{�,1/2}). Moreover, we prove

that, roughly speaking, the error of an arbitrary algorithm (for fixed a and b) that uses n values

of the diffusion coefficient, cannot converge to zero faster than n− min{�,1/2} as n → +∞. Hence,

the proposed version of the randomized Euler scheme achieves the established best rate of

convergence.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We consider global approximation of the following scalar stochastic differential equations{
dX(t) = a(t, X(t))dt + b(t)dW(t), t ∈ [0, T ],
X(0) = η,

(1)

where T > 0, W = {W(t)}t∈[0,T ] is a standard one-dimensional Brownian motion on some probability space (�,�, P) and an

initial-value η is independent of W. We assume that the drift coefficient a : [0, T ] × R → R is Lipschitz continuous in R with

respect to space variable. On the other hand, we assume that a is only measurable with respect to time variable, while b is only

piecewise Hölder continuous in [0, T] with Hölder exponent ϱ ∈ (0, 1]. Such assumptions are sufficient in order to assure that (1)

has a unique strong solution X = {X(t)}t∈[0,T ], see for example Section 2.2 and Theorem 3.1 in [16], Theorem 4.5.3 in Section 4.5

in [14], Section 5.2 and Theorem 2.9 in [13] or discussion at pages 11–13 in [17] where also further references are provided. The
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efficient approximation of X with the (asymptotic) error as small as possible is of interest, since the analytic solutions are known

only in particular cases.

In the case of ordinary differential equations (ODEs i.e., problem (1) with b ≡ 0) for instance, Carathéodory ordinary differen-

tial equations (CODEs) were considered in [7,24,25]. In that papers suitable Monte Carlo methods were defined to approximate

the solutions. In [11,12] the authors constructed optimal deterministic algorithms for initial-value problems with right-hand side

functions a that have discontinuous partial derivatives.

There is a rich literature that deals with approximation of stochastic differential equations (SDEs) with regular coefficients

a and b, see for example [14], which is the standard reference, and [17]. On the other hand, much less is known in case of

SDEs with irregular coefficients. We recall some recently obtained results on the topic. In [27] weak convergence of the Euler

algorithm was shown for SDEs with discontinuous a and b. However, order of convergence has not been investigated. In [15] the

authors also established rate of weak convergence of the Euler scheme for irregular drift coefficient a = a(t, y) and sufficiently

smooth diffusion b. Strong convergence of the Euler scheme applied to SDEs with discontinuous drift coefficients has been

studied in [18], while strong convergence of the drift-implicit square-root Euler approximations has been established in [4].

Nevertheless, the optimality of the proposed algorithms has not been investigated in the mentioned articles. Optimal rates of

convergence of the Euler scheme for SDEs (1), with coefficients a = a(t, y) and b = b(t) having separated variables and finite

number of discontinuities with respect to the time variable t, have been shown in [21]. In [22] the authors investigated the error

and worst-case optimality of the randomized Euler scheme applied to (1) with non-smooth a and b. Finally, in [23] the author

investigated asymptotic errors for the so called strong one-point approximation of SDEs (1) with time-irregular coefficients a and

b. In the one-point approximation we look for a random variable X̂(T) that is close (in the Lq(�)-norm, q ∈ [1, +∞)) to X(T), see

the discussion at page 2 in [17].

In [21,22] a one-point approximation of (1) was investigated. The error of an algorithm was meant there as the largest value

of the averaged difference between the actual and computed approximation over a certain class of input data (a, b, η). Such error

setting is called the worst-case setting, see Chapter 4 in [26]. On the other hand, in [23] the one-point approximation of (1) was

investigated in the asymptotic setting. This means that the error was considered to be the averaged difference between the real

value and computed solution for a fixed (a, b, η) from a certain set of input data. Then the (asymptotic) behavior of the error was

investigated as a number of evaluations of a, b and W tended to infinity. (Such approach was mostly used in textbooks and articles

on approximating SDEs.) The further problem was to establish lower bounds on the error of an arbitrary algorithm. We meant by

that establishing the existence of a set of ’difficult’ input (a, b, η) for which the rate of convergence cannot be improved. We also

wanted to know how ’large’ (in a certain mathematical sense) a subset of such mappings (a, b, η) was, see [8] and Chapter 10 in

[26] for a further discussion. An algorithm with the best convergence properties was referred to as the minimal error algorithm.

(For SDEs with smooth drift and diffusion coefficients the minimal asymptotic errors have been established in [5,6,17].)

In this paper we analyze strong global approximation of (1) in the asymptotic setting. We aim at the reconstruction of the whole

trajectories of X with an arbitrary sequence of approximations X̂ = {X̂n}n∈N, where each X̂n uses n samples of (piecewise Hölder

continuous) diffusion coefficient b. The nth error is meant as the distance between X and X̂n measured in Lq([0, T] × �)-norm,

q ∈ [1,+∞). Hence, it is an averaged distance, over all trajectories, between trajectories of X and X̂n. We investigate behavior of

the asymptotic error as n → +∞. (We give a detailed description of our goal in the next section.)

We now point out main difficulties which we have to handle in the paper. In the used setting an application of the randomized

Euler algorithm X̂RE
n from [22] is not possible, since it gives the approximation of the solution X = X(t) only at finite number

of discrete points t1, t2, . . . , tn ∈ [0, T ]. Also the continuous version X̃RE
n of X̂RE

n (see (46) in [22]) is not implementable, since it

requires the values of W = W(t) for all t ∈ [0, T]. Due to low regularity of a and b, we cannot use the algorithms developed

in [5,6,14,17]. Moreover, it turns out that the lower bounds obtained in [21,22] (worst-case setting) and in [23] (asymptotic

setting) for the one-point approximation do not imply in any way lower bounds for a global approximation of SDEs with the

error measured in the Lq([0, T] × �)-norm. Finally, we cannot directly use the lower bounds on the error developed in [5,6,17]

for the global approximation of SDEs to the whole class of (a, b, η) considered in this paper, since we assume that the coefficients

a = a(t, y) and b = b(t) may be non-smooth with respect to the time variable t and only Lipschitz continuous with respect to the

space y.

In order to reconstruct the solution X = X(t) of (1) for all t ∈ [0, T], we define a discrete type randomized Euler algorithm,

denoted by XRE = {XRE
n }n∈N. We analyze its error and cost in terms of number of evaluations of a, b and W. (See [2,3,7,10,24,25]

where suitable versions of XRE were used for approximation of ODEs.) In order to deliver the corresponding asymptotic lower

bounds on the error of an arbitrary algorithm, we extend the approach used in [23] for one-point approximation. As in the article

[23] we use some general results obtained in [8,9] for the asymptotic setting. Moreover, we give a proof of a generalization

of Theorem 3.3 (i) from [23], that concerns with an approximation of nonlinear operators defined on a nonempty subset of

M∞([0, T ]) with values in a normed linear space (see Theorem 4.3). Such generalization for global approximation turns out to

be necessary (see Remark 4.3).

The main result states that the error of an arbitrary sequence of approximations {X̂n}n∈N, where each X̂n uses n nonadaptive

evaluations of a diffusion coefficient, cannot go to zero faster than n− min{�,1/2} as n → +∞ (Theorem 4.5). This holds except on

the small subset of the set of b’s under consideration. By the small subset we mean ”the set of empty interior” (Theorem 4.2) or

”of Lebesgue measure zero” (Theorem 4.4). Moreover, the discrete type randomized Euler algorithm XRE turns out be a method

with optimal convergence properties (Theorem 4.5).

The structure of the paper is as follows. Problem formulation, assumptions and basic definitions are given in Section 2.

Section 3 contains definition and detailed error analysis of the discrete type randomized Euler scheme XRE that is used in or-
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