Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Weighted pre-orders involving the generalized Drazin inverse

Dijana Mosić*, Dragan S. Djordjević

Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, 18000 Niš, Serbia

ARTICLE INFO

MSC:

47A05

47A99

15A09

Keywords: Generalized Drazin inverse Generalized Drazin pre-order Support idempotent

ABSTRACT

The aim of this paper is to characterize new pre-orders defined on the set of all bounded linear operators between two Banach spaces. Thus, recent results on pre-orders involving the Drazin inverse of a complex matrix are extended to a more general setting.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{A} be a Banach algebra. An element $b \in \mathcal{A}$ is an inner inverse of $a \in \mathcal{A}$ if aba = a. By $a\{1, 5\}$ we denote the set of all inner inverse of a which commutes with a, i.e. $a\{1, 5\} = \{b \in \mathcal{A} : aba = a, ab = ba\}$.

Then $a \in A$ is quasipolar if and only if there exists $b \in A$ such that

ab = ba, bab = b and a - aba is quasinilpotent.

The element b, in the case when it exists, is unique and it is called the generalized Drazin inverse, or the Koliha-Drazin inverse of a, denoted by a^d [7, Theorem 7.5.3], [12]. By \mathcal{A}^d we denote the set of all generalized Drazin invertible elements of \mathcal{A} .

If the element a-aba is nilpotent in the above definition, then $a^d=a^D$ is the ordinary Drazin inverse. The condition $a-a^2b$ is nilpotent is equivalent to $a^{k+1}b=a^k$, for some non-negative integer k. The smallest k such that $a^{k+1}b=a^k$ holds, is called the index of a and it is denoted by ind(a). If $ind(a) \le 1$, then a is group invertible and a^D is the group inverse of a denoted by $a^\#$. The basic theory of the Drazin inverse and various applications can be found in the books [3,4].

Let *X* and *Y* denote arbitrary Banach spaces, and let $\mathcal{B}(X,Y)$ denote the set of all bounded linear operators from *X* to *Y*. Set $\mathcal{B}(X) = \mathcal{B}(X,X)$. For an operator $A \in \mathcal{B}(X,Y)$, the symbols N(A) and R(A), respectively, will denote the null space and the range of *A*. A projection is a bounded linear operator $P \in \mathcal{B}(X)$ such that $P^2 = P$.

If $A \in \mathcal{B}(X)$ is a generalized Drazin invertible operator, then the spectral idempotent A^{π} of A corresponding to $\{0\}$ is given by $A^{\pi} = I - AA^d$. The matrix forms of operators A and A^d with respect to the space decomposition $X = N(A^{\pi}) \oplus R(A^{\pi})$ are given by

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} \quad \text{and} \quad A^d = \begin{bmatrix} A_1^{-1} & 0 \\ 0 & 0 \end{bmatrix}, \tag{1}$$

[†] The authors are supported by by the Ministry of Education and Science, Republic of Serbia, grant no. 174007.

^{*} Corresponding author. Tel.: +38118533014. E-mail addresses: dijana@pmf.ni.ac.rs (D. Mosić), dragan@pmf.ni.ac.rs (D.S. Djordjević).

where A_1 is invertible and A_2 is quasinilpotent [12, Theorem 7.1]. If we denote $C_A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$ and $Q_A = \begin{bmatrix} 0 & 0 \\ 0 & A_2 \end{bmatrix}$, then $A = C_A + Q_A$ is known as the core-quasinilpotent decomposition of A. The operator C_A is called the core part of A and Q_A is called the quasinilpotent part of A. Notice that $C_A = A^2A^d$ is group invertible, $C_A^\# = A^d$, $Q_A = AA^\pi$ and $C_AQ_A = 0 = Q_AC_A[12, \text{Theorem 6.4}]$.

Let $W \in \mathcal{B}(Y,X)$, and let $\mathcal{B}_W(X,Y)$ be the space $\mathcal{B}(X,Y)$ equipped with the multiplication A*B = AWB and the norm $\|A\|_W = \|A\| \|W\|$. Then $\mathcal{B}_W(X,Y)$ becomes a Banach algebra [6]. $\mathcal{B}_W(X,Y)$ has the unit if and only if W is invertible, and in this case W^{-1} is the unit.

Let $W \in \mathcal{B}(Y,X)$ be a fixed nonzero operator. An operator $A \in \mathcal{B}(X,Y)$ is called Wg–Drazin invertible if A is quasipolar in the Banach algebra $\mathcal{B}_W(X,Y)$. The Wg–Drazin inverse $A^{d,W}$ of A is defined as the g–Drazin inverse of A in the Banach algebra $\mathcal{B}_W(X,Y)$ [6].

Let us recall that if $A \in \mathcal{B}(X, Y)$ and $W \in \mathcal{B}(Y, X)$ then the following conditions are equivalent [6]:

- (1) A is Wg-Drazin invertible,
- (2) AW is quasipolar in $\mathcal{B}(Y)$ with $(AW)^d = A^{d,W}W$,
- (3) WA is quasipolar in $\mathcal{B}(X)$ with $(WA)^d = WA^{d,W}$

Then, the Wg-Drazin inverse $A^{d, W}$ of A satisfies

$$A^{d,W} = ((AW)^d)^2 A = A((WA)^d)^2$$
.

The support idempotent $A^{\sigma,W}$ of A is given by $A^{\sigma,W} = (AW)^d A = A(WA)^d$.

Lemma 1.1 ([6]). Let $A \in \mathcal{B}(X, Y)$ and $W \in \mathcal{B}(Y, X) \setminus \{0\}$. Then A is W g-Drazin invertible if and only if there exist topological direct sums $X = X_1 \oplus X_2$, $Y = Y_1 \oplus Y_2$ such that

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}, \quad W = \begin{bmatrix} W_1 & 0 \\ 0 & W_2 \end{bmatrix},$$

where $A_i \in \mathcal{B}(X_i, Y_i)$, $W_i \in \mathcal{B}(Y_i, X_i)$, for $i = \overline{1, 2}$, with A_1 , W_1 invertible, and W_2A_2 and A_2W_2 quasinilpotent in $\mathcal{B}(X_2)$ and $\mathcal{B}(Y_2)$, respectively. The W g-Drazin inverse of A is given by

$$A^{d,W} = \begin{bmatrix} (W_1 A_1 W_1)^{-1} & 0\\ 0 & 0 \end{bmatrix}$$

with $(W_1A_1W_1)^{-1} \in \mathcal{B}(X_1, Y_1)$ and $0 \in \mathcal{B}(X_2, Y_2)$.

A binary relation on a non-empty set is called pre-order, if it is reflexive and transitive, and it is called a partial order relation if it is reflexive, antisymmetric and transitive. For some results of pre-orders and partial orders on the set of complex matrices see [14] and some related results can be found in the following references [8,10,11,13]. Some applications of pre-orders and partial orders you can find in [1,2].

Now, we will introduce the sharp order and the generalized Drazin pre-order on the corresponding subsets of $\mathcal{B}(X)$, which are extensions of similar orders for complex matrices [14].

Let $A, B \in \mathcal{B}(X)$ such that $ind(A) \leq 1$. We define the sharp order in the following way

$$A < ^{\#} B \Leftrightarrow A^{\#}A = A^{\#}B$$
 and $AA^{\#} = BA^{\#}$.

Lemma 1.2. [15, Theorem 3.3] The sharp order is a partial order on the set of operators $\{A \in \mathcal{B}(X) : \operatorname{ind}(A) \leq 1\}$.

Let $A, B \in \mathcal{B}(X)$ be generalized Drazin invertible operators such that $A = C_A + Q_A$ and $B = C_B + Q_B$ are the core-quasinilpotent decompositions of A and B respectively. The operator A is related to B under the generalized Drazin relation (denoted by $A \leq {}^d B$) if $C_A \leq {}^\# C_B$.

Theorem 1.1. Let $A, B \in \mathcal{B}(X)$ be generalized Drazin invertible operators such that $A = C_A + Q_A$ and $B = C_B + Q_B$ are the core-quasinilpotent decompositions of A and B respectively. Then $A \leq {}^dB$ if and only if

$$A^d A = A^d B$$
 and $AA^d = BA^d$.

Proof. If $A \leq {}^dB$, then $C_A C_A^\# = C_B C_A^\# = C_A^\# C_B$. Now, we have

$$Q_B C_A^\# = Q_B C_A^\# C_A C_A^\# = Q_B C_B C_A^\# C_A^\# = 0$$

and similarly $C_A^\# Q_B = 0$. Thus,

$$AA^{d} = C_{A}C_{A}^{\#} = C_{B}C_{A}^{\#} = BC_{A}^{\#} = BA^{d}$$

and analogously $AA^d = A^dB$.

Assume that $A^dA = A^dB = BA^d$. With respect to the space decomposition $X = N(A^{\pi}) \oplus R(A^{\pi})$, we can write A and A^d as in (1). Then

$$B = \begin{bmatrix} A_1 & 0 \\ 0 & B_2 \end{bmatrix} \quad \text{and} \quad B^d = \begin{bmatrix} A_1^{-1} & 0 \\ 0 & B_2^d \end{bmatrix}.$$

Download English Version:

https://daneshyari.com/en/article/4626263

Download Persian Version:

https://daneshyari.com/article/4626263

<u>Daneshyari.com</u>