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a b s t r a c t

This paper is concerned with exponential synchronization and anti-synchronization of

memristor-based neural networks. Under the framework of Filippov systems and a linear

controller, the exponential synchronization and anti-synchronization criteria for memristor-

based neural networks can be guaranteed by the matrix measure and Halanay inequality. The

criteria are very simple to implement in practice. Finally, two numerical examples are given

to demonstrate the correctness of the theoretical results. It is shown that the matrix measure

can increase the exponential convergence rate and decrease the feedback gain effectively.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Memristor, the fourth fundamental circuit element, was first proposed by Chua [1]. Since Hewlett-Packard research team

realized the first practical memristor device [2,3], memristor-based neural networks have been paid more and more attention

because they are suitable to emulate the human brain. The best property of memristor that should be emphasized is its hys-

teresis effects, in comparison to conventional resistor which cannot implement the function of memory. Such a property brings

memristor-based neural networks a fruitful application in pattern recognition, signal processing, optimization and associative

memories. It is reported that the number of equilibria in saturation regions of the neuronal state space of an n-neuron memristor-

based cellular neural network significantly increases up to 22n2+n compared with 2n in a conventional cellular neural network

without any memristor [4]. The application of memristor-based cellular neural networks for associative memories will undoubt-

edly improve the storage capacity.

Since the pioneering work of [5], synchronization of neural networks and complex networks has widely been investigated

[6–12]. Up to now, there are some good works about dynamical analysis [13–18], synchronization [19–28] and anti-

synchronization [29,30] of memristor-based neural networks . In [23], based on periodically intermittent control, they inves-

tigated the exponential synchronization of delayed memristive-based chaotic neural networks. The authors in [24] investigated

the synchronization problem for memristor-based neural networks with the approaches of adaptive control and feedback control.

In [29], a simple coupling control scheme is proposed for anti-synchronization of a class of memristive recurrent neural networks.
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It should be pointed out that the common method used in these papers is Lyapunov function (functional) approach. However,

sometimes, it is difficult to construct a proper Lyapunov function for a complicated system or the criteria obtained are incon-

venient to verify. What is more, most of the papers which investigated the exponential synchronization or anti-synchronization

did not give the exact exponential convergence rate.

Motivated by the above discussions, this paper mainly focuses on the exponential synchronization and anti-synchronization

of memristor-based neural networks with time-varying delays. Different from the past works, a new approach based on matrix

measure and Halanay inequality is introduced to study the stability of the error systems. Sufficient criteria are derived under

a linear feedback control scheme. Furthermore, the exponential convergence rate is given. Compared with Lyapunov function

method in the proof, matrix measure [31–34] has the following advantages: (1) matrix measure can avoid constructing Lyapunov

functions in the proof; (2) there is less restriction and requirement for the coupling matrix compared with matrix norm. The

symmetry, negative (positive) definiteness and diagonal need of the coupling matrix are removed; (3) the results obtained by

matrix measure method are usually less conservative than other approaches. The main contribution of this paper involves these

three aspects. Furthermore, this is the first time to use matrix measure method to investigate the exponential synchronization

and anti-synchronization of memristor-based neural networks with time-varying delays.

The remainder of this paper is organized as follows: In Section 2, model description and preliminaries are presented. In

Section 3, exponential synchronization and anti-synchronization criteria are obtained by using matrix measure and Halanay in-

equality. In Section 4, we give two examples to show the usefulness of our results. Finally, the conclusions are drawn in Section 5.

2. Model formulation and preliminaries

In this paper, we consider the following memristor-based neural network with time-varying delays:

ẋ(t) = −C(x(t))x(t) + A(x(t)) f (x(t)) + B(x(t − τ(t))) f (x(t − τ(t))) + J, (1)

where x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ R
n for i = 1, 2, . . . , n denotes the state variable associated with the neurons; n denotes

the number of neurons; C(x(t)) = diag{c1(x1(t)), c2(x2(t)), . . . , cn(xn(t))}, i = 1, 2, . . . , n;

ci(xi(t)) =
{

c∗
i
, |xi(t)| > Tj,

c∗∗
i

, |xi(t)| < Tj,

where c∗
i

> 0, c∗∗
i

> 0, ci( ± Tj) = c∗
i

or c∗∗
i

, Tj > 0 are the switching jumps; f (x(t)) = ( f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))T and

f (x(t − τ(t))) = ( f1(x1(t − τ1(t))), f2(x2(t − τ2(t))), . . . , fn(xn(t − τn(t))))T are the neuron activation functions of the neu-

rons at time t and t − τ(t), τ1(t), . . . , τn(t) are the time-varying delays and satisfy 0 ≤ τ i(t) ≤ τ , τ is a positive constant;

J = ( J1, . . . , Jn) ∈ R
n is a constant external input vector; A(x(t)) = [ai j(x j(t))]n×n, B(x(t − τ(t))) = [bi j(x j(t − τ j(t)))]n×n, i, j =

1, 2, . . . , n, are connection memristive weight matrix and the delayed connection memristive weight matrix, respectively:

ai j(x j(t)) =
{

a∗
i j
, |x j(t)| > Tj,

a∗∗
i j

, |x j(t)| < Tj,
bi j(x j(t − τ j(t))) =

{
b∗

i j
, |x j(t − τ j(t))| > Tj,

b∗∗
i j

, |x j(t − τ j(t))| < Tj.

ai j( ± Tj) = a∗
i j

or a∗∗
i j

, bi j( ± Tj) = b∗
i j

or b∗∗
i j

for i, j = 1, 2, . . . , n, a∗
i j
, a∗∗

i j
, b∗

i j
and b∗∗

i j
are all constants.

Throughout this paper, we consider (1) as the drive system and the corresponding response system is as follow:

ẏ(t) = −C(y(t))y(t) + A(y(t)) f (y(t)) + B(y(t − τ(t))) f (y(t − τ(t))) + J + u(t), (2)

where y(t) = (y1(t), y2(t), . . . , yn(t))T , C(y(t)) = diag{c1(y1(t)), c2(y2(t)), . . . , cn(yn(t))}, i = 1, 2, . . . , n;

A(y(t)) = [ai j(y j(t))]n×n, B(y(t − τ(t))) = [bi j(y j(t − τ j(t)))]n×n,

ci(yi(t)) =
{

c∗
i
, |yi(t)| > Tj,

c∗∗
i

, |yi(t)| < Tj,
ai j(yj(t)) =

{
a∗

i j
, |yj(t)| > Tj,

a∗∗
i j

, |yj(t)| < Tj,

bi j(yj(t − τ j(t))) =
{

b∗
i j
, |yj(t − τ j(t))| > Tj,

b∗∗
i j

, |yj(t − τ j(t))| < Tj,

and u(t) = (u1(t), u2(t), . . . , un(t))T is the controller.

The initial conditions of (1) and (2) are given by xi(s) = φi(s), yi(s) = ψi(s), s ∈ [t0 − τ, t0], i = 1, 2, . . . , n, where φ(·) = [φ1(·),
φ2(·), . . . , φn(·)]T , ψ(·) = [ψ1(·),ψ2(·), . . . ,ψn(·)]T ∈ C([t0 − τ, t0], R

n). ‖φ‖p = supt0−τ≤s≤t0
‖φ(s)‖p is used to denote the

norm of a function φ ∈ C([t0 − τ, t0], R
n). ‖ · ‖p is a vector norm and p = 1, 2,∞. For x ∈ R

n, the vector norm ‖ · ‖p is defined as

‖x‖1 = ∑n
i=1 |xi|, ‖x‖2 =

√∑n
i=1 x2

i
, ‖x‖∞ = max1≤i≤n |xi|.

In this paper, since aij(xj(t)) and bi j(x j(t − τ j(t))) are discontinuous, solutions of all systems considered in this paper are

handled in Filippov’s sense [35]. Through the theories of differential inclusions and set-valued maps, from (1) and (2), it follows

that

ẋ(t) ∈ −[C,C]x(t) + [A, A] f (x(t)) + [B, B] f (x(t − τ(t))) + J, (3)

and

ẏ(t) ∈ −[C,C]y(t) + [A, A] f (y(t)) + [B, B] f (y(t − τ(t))) + J + u(t), (4)
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