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The aim of this paper is to investigate existence and stability of the solution of the functional

integral equations of fractional order arising in physics, mechanics and chemical reactions.

These equations are considered in the Banach space of real functions defined, continuous and

bounded on an unbounded interval R+. The main tools used in our considerations are the

concept of a measure of noncompactness and the classical Schauder fixed point theorem. Also,

the numerical method is employed successfully for solving these functional integral equations

of fractional order.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Integral equations of fractional order play a very significant role in describing some real world problems. For example some

problems in physics, mechanics, engineering, electrochemistry, and other fields can be described with the help of integral equa-

tions of fractional order [1–7] and several research papers studied those integral equations [8,9]. Despite many researches in the

recent years in the area of solvability of an integral equation of fractional order on a bounded interval, much less has been done

on functional integral equations of fractional order on an unbounded interval.

There is an increasing demand for studying functional integral equation of fractional order and these problems of course

cannot be solved explicitly. Therefore, it is important to investigate the problem of the existence of solutions of these integral

equations. The stability of solutions for fractional differential equations has been studied by many authors, e.g. Deng [10] and Li

et al. [11]. Let us pay attention to the fact that only a few papers investigated the stability of solutions for integral equation of

fractional order and functional type has been considered less.

Definition 1. Let x ∈ L1(a, b), 0 ≤ a < b < ∞, and let α > 0 be a real number. The (Riemann–Liouville) fractional integral of order

α is defined by

Iαx(t) = 1

�(α)

∫ t

0

x(s)

(t − s)1−α
ds, t ∈ (a, b)

where �(α) denotes the gamma function.

It may be shown that the fractional integral operator Iα transforms the space L1(a, b) into itself and has some other properties

[4,12–14].

Let us notice that the above definition can be easily extended to the space L1(a, ∞). More generally, we can consider the

operator Iα on the function space L1
loc

(a, ∞) consisting of real functions being locally integrable over the interval [a, ∞).
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In this paper, we will consider singular functional integral equation of the form

x(t) = g(t) + f

(
t,

∫ t

0

u(t, s, x(s))

(t − s)1−α
ds, x(h(t, x(t)))

)
, (1)

where α ∈ (0, 1), t ∈ R+, and we have g(t) ∈ BC(R+), f : R+ × R × R −→ R, u : R+ × R+ × R −→ R and h : R+ × R −→ R+ are

functions satisfies special assumptions, see Section 3. The singular functional integral equations having the form (1) are also

called equations of fractional order since the term with the integral appearing in Eq. (1) can be treated from the viewpoint of the

concept of Riemann–Liouville integral of fractional order.

This paper is devoted to study the existence and stability of solution of Eq. (1) in the Banach space of real functions defined,

continuous and bounded on an unbounded interval R+. The technique used here is the measure of noncompactness associated

with the Schauder fixed point theorem. Also, This article investigates the numerical scheme based on the Sinc approximation

with the single exponential (SE) transformation for solving Eq. (1). In comparison with other bases, it advantages are the ex-

ponential convergence of an approximate solution and implementation and accurate approximation, even in the presence of

singularities.

The paper is organized as follows. In Section 2, we review some basic facts which will be needed in our further considerations.

Section 3 is devoted to study the solvability of the functional integral (1). In Section 4, we investigate the stability of solutions

of Eq. (1). In Section 5, Sinc method is introduced to approximate the solution of Eq. (1). In the last section, some examples are

given to demonstrate the applicability of our results.

2. Preliminaries

The goal of this section is to recall notations and definitions which will be needed in our further investigations.

Let E be a real Banach space with the norm ‖.‖ and the zero element θ . Denote by B(x, r) the closed ball centered at x and

with radius r. The ball B(θ , r) will be denoted by Br. If X is a subset of E then the symbols X̄ and Conv X stand for the closure and

convex closure of X, respectively. We use the standard notation X + Y , λX to denote the usual algebraic operations on subsets X

and Y of the space E. Further, let ME denote the family of all nonempty and bounded subsets of E and NE its subfamily consisting

of all relatively compact sets.

We will accept the following definition about a measure of noncompactness [15].

Definition 2. A mapping μ : ME −→ R+ is said to be a measure of noncompactness in the space E if it satisfies the following

conditions:

(1) The family ker μ={X ∈ ME : μ(X) = 0} is nonempty and ker μ ⊂ NE .

(2) X ⊂ Y ⇒ μ(X) ≤ μ(Y).

(3) μ(X) = μ(X̄) = μ(ConvX).

(4) μ(λX + (1 − λ)Y) ≤ λμ(X) + (1 − λ)μ(Y) f or λ ∈ [0, 1].

(5) If (Xn) is a sequence of closed sets from ME such that Xn+1 ⊂ Xn (n = 1, 2, . . . ) and if limn→∞ μ(Xn) = 0, then the set

X∞ = ⋂∞
n=1 Xn is nonempty.

The family ker μ defined in (1) is called the kernel of the measure of noncompactness μ.

Remark 1. Let us notice that the intersection set X∞ described in axiom (5) is a member of the kernel of the measure of non-

compactness μ. In fact, the inequality μ(X∞) ≤ μ(Xn) for n = 1, 2, . . . implies that μ (X∞) = 0. Hence X∞ ∈ ker μ. This property

of the set X∞ will be very important in our investigations.

For further facts concerning measures of noncompactness and their properties we refer the reader to [15].

In what follows, we will work in the Banach space BC(R+) consisting of all real functions defined, continuous and bounded

on R+. This space is furnished with the standard norm

‖x‖ = sup{|x(t)| : t ≥ 0}.
We will use a measure of noncompactness in the space BC(R+) which was introduced in [15]. In order to define this measure let

us fix a nonempty bounded subset X of the space BC(R+) and a positive number T. For x ∈ X and ε ≥ 0 denote by ωT(x, ε) the

modulus of continuity of the function x on the interval [0, T ], i.e.

ωT (x, ε) = sup{|x(t) − x(s)| : t, s ∈ [0, T ] , |t − s| ≤ ε}.
Moreover, let us put

ωT (X, ε) = sup{ωT (x, ε) : x ∈ X},
ωT

0(X) = lim
ε→0

ωT (X, ε),

ω0(X) = lim
T→∞

ωT
0(X).

If t is a fixed number from R+, let us denote

X(t) = {x(t) : x ∈ X}
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