Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Graphs with fixed number of pendent vertices and minimal Zeroth-order general Randić index

^a School of Science, Beijing University of Chemical Technology, Beijing, 100029, China ^b Department of Mathematics, Sungkyunkwan University, Suwon, 440-746, Korea

ARTICLE INFO

Keywords: Zeroth-order general Randić index Extremal graphs Pendent vertex Cyclomatic number

ABSTRACT

We investigate the graph with minimal Zeroth-order general Randić index in terms of its order n, pendent number N_1 and cyclomatic number $\gamma \ge 0$. Extremal graphs were completely characterized for cases of $\gamma = 0, 1, 2$, which can be directly extended for graphs with cyclomatic number $\gamma \ge 3$.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, we consider finite undirected graphs without loops and multiple edges. Concepts and notations not defined in this paper are as in standard textbook [1]. Let *G* be such a graph and let its vertex set be *V*(*G*) and edge set *E*(*G*), respectively. The numbers of vertices and edges of *G* are denoted by n = |V(G)| and m = |E(G)|, respectively. For a connected graph, the **cyclomatic number** (=number of independent cycles) is equal to $\gamma = m - n + 1$. Recall that graphs with $\gamma = 0, 1, 2$ are referred to as trees, unicyclic graphs and bicyclic graphs, respectively.

A graph invariant is a function on a graph that does not depend on the labeling of its vertices. Hundreds of graph invariants based on distances between the vertices of a graph have been considered in quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) researches. Among the most important degree-based topological indices is the well-known Zeroth-order general Randić index. Let α be a given real number with $\alpha \neq 0$ and $\alpha \neq 1$, the **Zeroth-order general Randić index**, denoted by ${}^{0}R_{\alpha}(G)$, was defined by Li and Zheng in [2]:

$${}^{0}R_{\alpha}(G) = \sum_{u \in V} \deg^{\alpha}(u),$$

where deg(u) denotes the degree of vertex u and α is a pertinently chosen real number. This index is a common generalization of the Zeroth-order Randić index [4] and the first Zagreb index (will be given later). Li and Zhao [3] determined the trees with the first three minimum and maximum Zeroth-order general Randić index. In [7] the authors investigated the Zeroth-order general Randić index for molecular (n, m)-graphs, i.e., simple connected graphs with n vertices, m edges and maximum degree at most 4. Zhang and Zhang [5] determined the unicyclic graphs with the first three minimum and maximum Zeroth-order general Randić index. Zhang et al. [6] determined the bicyclic graphs with the first three minimum and maximum Zeroth-order general Randić index. In [8], Hu et al. investigated the Zeroth-order general Randić index for general simple connected (n, m)-graphs and characterized the simple connected (n, m)-graphs with extremal (maximum and minimum) Zeroth-order general Randić index. Li and Shi [9] did some further works on this topic following [8]. In 2009, Cheng and co-workers [10] determined the minimum

* Corresponding author. Tel.: +1- 706 -248 -5537. *E-mail address:* gfs1983@126.com, gfs86@uga.edu (G. Su).

http://dx.doi.org/10.1016/j.amc.2015.08.060 0096-3003/© 2015 Elsevier Inc. All rights reserved.

and maximum Zeroth-order general Randić index values of bipartite graphs with a given number of vertices and edges for $\alpha = 2$. In 2013, Su et al. [11] presented several sufficient conditions for graphs to be maximally edge-connected in terms of the Zeroth-order general Randić index, and generalized the results given by Dankelmann et al. [12].

In 1972, Gutman and Trinajstić introduced the first Zagreb index:

$$M_1(G) = \sum_{u \in V} \deg^2(u),$$

which can be seen as the special case of the Zeroth-order general Randić index for $\alpha = 2$ and has been considered in connection with certain chemical applications [13,14]. A vast amount of research on the first Zagreb index has been done so far. For details of its mathematical theory see the papers [15–19], the recent contributions could be found in [20–23]. There are many other degree-based topological indices, such as ABC index and Randić index, the interested reader refer to [24–40].

In what follows, we assume that G is connected. Let N_k denote the number of vertices of degree k in graph G. Then, evidently,

$$\sum_{k\geq 1} N_k = n. \tag{1}$$

From the Handshaking Lemma, it immediately follows

$$\sum_{k\geq 1} kN_k = 2m. \tag{2}$$

Thus the Zeroth-order general Randić index of G can be represented as

$$\sum_{k\geq 1} k^{\alpha} N_k = {}^0 R_{\alpha}(G).$$
(3)

Before processing, we will introduce several more concepts and notations. A vertex of a graph is said to be **pendant** if its neighborhood contains exactly one vertex. Then N_1 is the number of pendent vertices, and the respective graph will be said to be N_1 -graph. Let $\mathcal{G}_{n,m}$ be a class of graphs with n vertices and m edges, and (n, N_1) -graph is such a graph with n vertices and N_1 pendent vertices. Let x be a real number, denote $\lfloor x \rfloor$ the greatest integer number does not greater than x.

2. General graphs with minimal ${}^{0}R_{\alpha}$ -value

In what follows it will be assumed that the parameter α in Eq. (3) is a positive integer.

Theorem 2.1. Let G be a connected graph with N_1 pendent vertices, cyclomatic number γ and without vertices of degree 3. Then

$${}^{0}R_{\alpha}(G) \ge 4^{\alpha}(\gamma - 1) + (1 + 2^{-1} \cdot 4^{\alpha})N_{1}.$$
(4)

Equality in (4) holds if and only if all non-pendent vertices of G are of degrees 4, provided such graphs exist.

Proof. Multiply Eqs. (1) and (2), respectively by 4^{α} and $-2^{-1} \cdot 4^{\alpha}$, we have

$$\sum_{k\geq 1} 4^{\alpha} N_k = 4^{\alpha} n^{-} \text{and}^{-} \sum_{k\geq 1} -2^{-1} \cdot 4^{\alpha} k N_k = -4^{\alpha} m.$$
(5)

Adding these equalities to Eq. (3), yields

$${}^{0}R_{\alpha}(G) = 4^{\alpha}(\gamma - 1) + \sum_{k \ge 1} [4^{\alpha} - 2^{-1} \cdot 4^{\alpha}k + k^{\alpha}]N_{k}.$$
(6)

Let $\Phi(\alpha, k) = 4^{\alpha} - 2^{-1} \cdot 4^{\alpha}k + k^{\alpha}$, which is a polynomial of degree α in the variable *k*. Simple verifications show the following noteworthy facts:

Fact 1. $\Phi(\alpha, 1) = 1 + 2^{-1} \cdot 4^{\alpha}$ and $\Phi(\alpha, 2) = 2^{\alpha}$ are positive-valued.

Fact 2. $\Phi(\alpha, 4) = 4^{\alpha} - 2^{-1} \cdot 4^{\alpha} \cdot 4 + 4^{\alpha} = 0.$

This suggests that k = 4 is a root of the polynomial $\Phi(\alpha, k)$ for all α .

Fact 3. $\Phi(\alpha, k)$ is non-negative-valued for all $k \ge 4$.

In fact, $\Phi(2, k) = k^2 - 8k + 16 = (k - 4)^2$ and $\Phi(3, k) = k^3 - 32k + 64 = (k - 4)(k^2 + 4k - 16)$, which are positive-valued for all $k \ge 5$. On the other hand, if $\alpha \ge 3$,

$$\frac{d\Phi(\alpha,k)}{dk} = \alpha k^{\alpha-1} - 2^{-1} \cdot 4^{\alpha} > 0$$

holds for all $k \ge 5$. This implies that $\Phi(\alpha, k)$ is a monotonically increasing function. Since $\Phi(\alpha, 4) = 0$, $\Phi(\alpha, k) \ge 0$ for $k \ge 4$. Note that $N_k \ge 0$ for $k \ge 2$, and combining Facts 1–3 we arrive at:

$${}^{0}R_{\alpha}(G) \geq 4^{\alpha}(\gamma - 1) + (1 + 2^{-1} \cdot 4^{\alpha})N_{1}.$$

We complete the proof of Theorem 2.1. \Box

706

Download English Version:

https://daneshyari.com/en/article/4626279

Download Persian Version:

https://daneshyari.com/article/4626279

Daneshyari.com