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In this paper, a fast proximal point algorithm (PPA) is proposed for solving �1-minimization

problem arising from compressed sensing. The proposed algorithm can be regarded as a

new adaptive version of customized proximal point algorithm, which is based on a novel

decomposition for the given nonsymmetric proximal matrix M. Since the proposed method

is also a special case of the PPA-based contraction method, its global convergence can be

established using the framework of a contraction method. Numerical results illustrate that

the proposed algorithm outperforms some existing proximal point algorithms for sparse

signal reconstruction.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study proximal point algorithms for �1-minimization problem arising from the area of compressed sensing.

In compressed sensing theory, one is interested in finding a solution x∗ ∈ R
n to the following problem:

min
x∈Rn

‖x‖1 s.t. Ax = b, (1)

which is widely known as basis pursuit (BP) problem. Usually, the equality constraint is relaxed to an inequality constraint in the

case of data being corrupted by outlying noises such as additive Gaussian noise. Hence the BP problem (1) could be reformulated

in a form of �1-regularized least square problem as follows:

min
x∈Rn

λ‖x‖1 + 1

2
‖Ax − b‖2, λ > 0. (2)

The problem above is called as basis pursuit denoising (BPDN) problem, which is very close to the LASSO problem in statistics

[14]. Actually the original LASSO problem can be transformed into an unconstrained form according to the Lagrangian multiplier

theorem. In fact the parameter λ in (2) is just the Lagrangian multiplier corresponding to the sparsity constraint in the LASSO.

On the other hand, the problems (1) and (2) can be unified in a general fashion though they are quiet different in structure. From

a viewpoint of homotopy, we know that the solutions of BPDN problem converges to those of BP problem as λ → 0 continuously.

Hence a numerical solver for (2) also can be used to solve (1) if a procedure of continuation is casted on the parameter λ.
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Fast numerical algorithms for problems with separable structure (for example, see (2)) were extensively studied in the last

decade. Most of these algorithms take advantage of the separable structure based on operator splitting. Some augmented La-

grangian/Bregman distance based methods splits the involved problem via a block Gauss–Seidel approximation [5,11,15,16], while

other algorithms decouple variables by formulating the original problem into a primal-dual formulation [1,3,8,19]. Moreover,

some theoretical connections between these two types of methods have been analyzed in [3,15,16].

A class of so-called proximal point algorithms is of our main interests in this paper for its computational efficiency and

simplicity in convergence analysis. Proximal point algorithm was originally proposed in [10] and then was naturally extended

to metric form [4,7–9]. The proximal matrix is usually sophisticatedly chosen so that subproblems in the metric proximal

point algorithm can be easily solved, for which reason these metric proximal point algorithms are called customized proximal

point algorithms by authors in [7]. Since it fully takes advantage of special structure of problems, the customized proximal point

algorithm usually shows remarkable efficiency in practice. Recently, some nonlinear proximal point algorithms for monotonic

variational inequalities were given and analyzed in [13].

Proximal point algorithm is quite simple in theoretic analysis. Its convergence can be obtained by directly extending the re-

sult developed in [10] to metric form when the proximal matrix is symmetric and positive definite [7]. It has been shown in [8]

that the first-order primal-dual algorithm is equivalent to a proximal point algorithm, hence the convergence analysis is greatly

simplified. In the case of asymmetric proximal matrix, an extra correction step is easily performed so that the convergence is

guaranteed [6,8]. The correction ensures the algorithm having a contraction property, hence these methods are called contrac-

tion methods. A proximal point algorithm based contraction method using an adaptive proximal matrix was proposed for total

variation image restoration in [2].

Steplength in customized proximal point algorithm is usually constant. Naturally an adaptive steplength could achieve better

performance. The main contribution of this paper is to propose an adaptive customized proximal point algorithm and to show

its improvement to the existing algorithms. This work is mainly motivated by [6,8], and the basic analytic tool is the contraction

method extensively developed in [6,8].

The paper is organized as follows. First, we introduce a primal-dual formulation of the BPDN problem and briefly review some

basic notations of proximal point algorithm and contraction method in Section 2. Then we present a new contraction method

and show its connection to a customized proximal point algorithm in Section 3, and then discuss the global convergence of the

proposed algorithm in Section 4. Finally, we did a sparse signal reconstruction experiment to show the efficiency of the proposed

algorithm numerically in Section 5.

2. Preliminaries

In this section, we provide some basic notations which will be useful for subsequent analysis. In particular, we review some

basic ideas of variational inequalities (VIs), the proximal point algorithms and contraction methods.

2.1. VI formulation of (2)

Let y ∈ R
m be Lagrangian multiplier. Then the optimization problem (2) is equivalent to finding a saddle point of the min–max

problem

min
x

max
y

�(x, y) := ‖x‖1 − yT (Ax − b) − λ

2
‖y‖2, (3)

and in the following analysis we mainly aim to solve the problem (3).

From the first-order optimality conditions of (3) and the convexity of the involved functions, the min–max problem (3) can

be characterized by the following mixed variational inequality problem: find a solution pair x∗ ∈ R
n and y∗ ∈ R

m such that

‖x‖1 − ‖x∗‖1 +
(

x − x∗

y − y∗

)T( −AT y∗

Ax∗ − b + λy∗

)
≥ 0,∀x ∈ R

n, y ∈ R
m.

Denote

u =
(

x
y

)
, u∗ =

(
x∗

y∗

)
, F(u∗) =

(
−AT y∗

Ax∗ − b + λy∗

)
,� = R

n × R
m,

then the VI problem above can be rewritten in the following compact form: find u∗ ∈ � such that

‖x‖1 − ‖x∗‖1 + (u − u∗)T F(u∗) ≥ 0,∀u ∈ �. (4)

It is easy to verify that the mapping F in (4) is monotone with respect to � in the sense of

(u − v)T {F(u) − F(v)} ≥ 0, ∀ u, v ∈ �.

Therefore, the VI (4) is monotonic. Denote the solution set as �∗. Throughtout this paper, we always assume that �∗ is not empty.

It is worth noting that �(x, y) is the Lagrangian function of (1) in the case of λ = 0, which means that the min-max formulation

(3) is an extension of Lagrangian duality, and that our algorithm, as we will see, is an extension of classical augmented Lagrangian

method.

Finally before reviewing existing algorithms, two notions of norms about matrices are worthy of being showcased in advance.



Download English Version:

https://daneshyari.com/en/article/4626287

Download Persian Version:

https://daneshyari.com/article/4626287

Daneshyari.com

https://daneshyari.com/en/article/4626287
https://daneshyari.com/article/4626287
https://daneshyari.com

