
Microprocessors and Microsystems 40 (2016) 102–112

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Reliability of data processing and fault compensation in unreliable

arithmetic processors

Peter Raab a,∗, Stefan Krämer b, Jürgen Mottok b

a Faculty of Mechanical Engineering and Automotive Technology, Hochschule Coburg, Friedrich-Streib-Straße 2, 96450 Coburg, Germany
b Faculty of Electronics and Information Technology, OTH-Regensburg, Seybothstr. 2, D-93953 Regensburg, Germany

a r t i c l e i n f o

Keywords:

Data flow

Error probability

Fault compensation

Software-implemented hardware fault

tolerance (SIHFT)

Stochastic simulation

Simulated fault injection

a b s t r a c t

In logical circuits, like arithmetic operations in a processor system, arbitrary faults become a more tremen-

dous aspect in future. Modern manufacturing processes lead to less reliability and higher vulnerability of

software execution to soft-errors. The correctness of certain results is important especially for safety–critical

applications whose reliability depends on the fault-free execution of each single instruction and the depen-

dencies between them. The more complex a software is the more unreliable the outcome is. But, there is a

contrary effect. If the probability for multiple faults increases, there is also the chance that two faults com-

pensate each other and the result is correct again. This paper presents the basic ideas for such a reliability

evaluation of a software’s data flow with arbitrary soft-errors and the effect of fault compensation. Further,

this evaluation provides a possibility to compare different implementations of a data flow with respect to

the reliability. This is shown by the comparison of two different error codes as alternatives for coded data

processing.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The complexity and functionality of electronic control units have

more and more increased in several sectors of industry the last years.

In addition, the requirements of these systems have become more de-

manding in terms of safety, reliability and availability. In contrast to

this progress, industry demands a decrease in costs for electronics,

while at the same time remaining competitive. The use of inexpen-

sive commodity hardware is the result. However, the development

of present microcontrollers follows the trend of decreasing feature

size in silicon. This leads to less reliability and arbitrary hardware

faults are more likely [1]. But despite unreliable hardware, fault tol-

erance is a requirement of safety–critical applications [2]. This can

often be realized by Software-Implemented Hardware Fault Tolerance

(=SIHFT) in many ways [3]. One simple possibility of hardening the

data against soft-errors (SEU = Single Event Upset [5]) is the du-

plication (=data redundancy) and the multiple computation of data

(=time redundancy) [3,4,6]. But, only transient faults can be detected

by pure data redundancy. Permanent faults in the CPU (e.g. stuck-at

fault in the adder hardware) will generate the same erroneous result.

∗ Corresponding author.

E-mail addresses: peter-j.raab@hs-coburg.de (P. Raab), stefan.kraemer@

oth-regensburg.de (S. Krämer), juergen.mottok@oth-regensburg.de (J. Mottok).

The consequence is the use of redundant hardware or of diverse data

so that different units of the CPU are used [6]. An example of diverse

data is coded data processing, which is considered as an important

aspect for software-based hardware fault detection in recent appli-

cations. However, diverse data processing does not detect all faults.

There is still a residual probability for non-detection. This residual er-

ror probability is a crucial metric for the evaluation of error codes. But

in contrast to error detecting codes used in transmission and storage

systems [21,24,25], where sufficient error models are available for de-

termining this probability, there are no comparable models for arith-

metic operations in a processor system [13]. But by means of such er-

ror models, the analytical evaluation of faulty outcomes in arithmetic

instructions is then possible opposed to state-of-the-art experimen-

tal methods like fault injection. Indeed, the higher complexity of soft-

ware as a set of interdependent arithmetic operations results in fur-

ther effects of fault compensation. This effect of fault compensation

is evaluated by fault injection in a stochastic simulation framework

based on the Monte Carlo method. There a detailed microcontroller

model is the basis for the analysis of fault compensation.

The structure of this paper is as follows:

Section 2 summarizes the related works in the domain of

software-based hardware fault detection and coded data process-

ing. Further, Section 3 repeats the necessary background of coded

processing and reliability evaluation for better understanding. In

http://dx.doi.org/10.1016/j.micpro.2015.07.014

0141-9331/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.micpro.2015.07.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2015.07.014&domain=pdf
mailto:peter-j.raab@hs-coburg.de
mailto:stefan.kraemer@oth-regensburg.de
mailto:juergen.mottok@oth-regensburg.de
http://dx.doi.org/10.1016/j.micpro.2015.07.014


P. Raab et al. / Microprocessors and Microsystems 40 (2016) 102–112 103

Section 4, we introduce the reliability evaluation of a given data flow

and investigate linear codes as an alternative for coded processing

based on the previously defined evaluation. The detailed analysis of

fault compensation by a simulation approach is depicted in Section 5.

The paper proceeds with a discussion of the results in Section 6 and

ends with a conclusion for further works in Section 7.

2. Related works

In literature, they report a lot of pure software-based fault-

tolerant approaches which are diverging in the effectivity of fault

detection.

The approach of coded processing refers to special error detect-

ing or error correcting techniques [29]. But this approach is not lim-

ited only to circuits. There are pure software methods available that

protect the results of operations in an arithmetic unit by means

of error detection codes, as well. The input data are encoded be-

fore being processed in an arithmetic unit and the output data are

decoded again for verification at the end (Fig. 1). With this view,

coded processing is related to channel coding as a part of the coding

theory.

To be applicable for arithmetic operations, the used error code

must preserve the result of the operation as a valid code word. In the

past, a lot of codes with this property were described that can be used

for arithmetic processors [7–12]. The most important code which is

commonly used for coded processing is the so-called arithmetic code

(AN-code) whose code words are the product of the constant genera-

tor A and the information word (Eq. (1)).

CAN := {A · X|A,X ∈ Z} (1)

AN-codes are based on ordinary algebra and preserve the code

word with respect to the addition of two code words. This means that

the sum of two code words is still a multiple of A and thus it is an el-

ement out of the set of code words.

C1 + C2 = A · X1 + A · X2 = A · (X1 + X2) (2)

But the product of two code words does not match to the coded

product of the originals and further corrections would be required.

C1 · C2 = A · X1 · A · X2 = A2 · (X1 · X2) �= A · (X1 · X2) (3)

In 1989, Forin made use of AN-codes for coded processing

in a real application the first time [9]. He defined coded opera-

tions (including additional corrective actions) for most arithmetic

operations and he extended signatures to detect operation, op-

erator and operand errors, as well. Furthermore in [13], Ozello

discussed the probability of undetection of coded processing. He

distinguished between the case where each instruction is verified

and the second case when the verification is done after m opera-

tions. The latter case is more important for real applications, because

the verification of the coded result is usually done at certain points

within a task [14]. A possible fault E1 during the first operation prop-

agates the deviation in the code word with C1
′ = C1 + E1 to the fol-

lowing operation and the result remains faulty also after the sec-

ond operation (C2’ = C2 + E2). However, the operation itself or other

faulty variables can introduce new faults and influence the final er-

ror word. He described this series of deviations by a polynomial

Eg = {E1, E2, … , Em} with m is the number of operations until the ver-

ification of the result is done. His evaluation is independent of the un-

derlying error model of the processor. But with the assumption that

the elements of Eg are equally distributed and not zero, he demon-

strated that the probability of non-detected faulty code words is 1/A.

This simplification is questionable for real operations and it does not

consider the concrete realization of the underlying hardware. Addi-

tionally to the effect of the transition from a valid to an invalid code

word, there is the effect that consecutive instructions with new er-

ror words compensate each other. For example, the sum of two faulty

coded variables with deviations E 1 and E 2 results in a valid code

word, if the sum of both errors is a multiple of A again:

(E1 + E2)mod A = 0 (4)

Ozello further remarked that the longer the software the greater

the probability to have a polynomial identical to zero which means

no deviation in the result. But only programs with more than 10,000

lines show this effect.

The ED 4 I (=Error Detection by Diverse Data and Duplicated In-

structions) approach presented by Oh et al. [6] is basically a standard

method of duplication. A program is executed twice (=instruction

duplication) and the data of the copied program are diversely rep-

resented. These diverse data are generated by the multiplication of

the original data with the so-called diversity factor. For verification,

the coded result is compared with the original data at the end. Fur-

thermore, they defined a diversity metric to evaluate several diversity

factors with respect to the data integrity and the fault detection prob-

ability of different hardware functions (e.g. adder or bus line signals).

The diversity factor k determines how diverse the copied program is

compared to the original program. They also evaluated several opti-

mal values of k for different hardware functions (e.g. k = −2 for an

adder). Basically, this approach is a simple example for coded data

processing where they used coded data instead of the original. In ad-

dition, they defined mathematic models to evaluate and compare dif-

ferent diversity factors with respect to the data integrity and detec-

tion probability.

Moreover, Benso et al. [15] introduced a reliability-weight for each

variable in a program which is a function of the variable’s life time

and the dependencies to other variables. The life period of a vari-

able is the time between the first write (initialization) of a vari-

able till it is read the last time before it is written again. The life

time is then the sum of all life periods and the longer this time is

the higher the probability of being corrupted. Variables with a high

reliability-weight are usually more critical for the reliability of the

Fig. 1. Simplified processor model: The arithmetic unit in a processor represents a channel with respect to arbitrary (transient or permanent) faults which change the value of a

result during the execution of an operation.



Download English Version:

https://daneshyari.com/en/article/462629

Download Persian Version:

https://daneshyari.com/article/462629

Daneshyari.com

https://daneshyari.com/en/article/462629
https://daneshyari.com/article/462629
https://daneshyari.com

