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a b s t r a c t

The generalized Fermi–Dirac integral, Fk(η, β), is approximated by a group of polynomials of

β as Fk(η, β) ≈ ∑J
j=0

gjβ
jFk+ j(η) where J = 1(1)10. Here Fk(η) is the Fermi-Dirac integral of

order k while gj are the numerical coefficients of the single and double precision minimax

polynomial approximations of the generalization factor as
√

1 + x/2 ≈ ∑J
j=0

gjx
j . If β is not so

large, an appropriate combination of these approximations computes Fk(η, β) precisely when

η is too small to apply the optimally-truncated Sommerfeld expansion (Fukushima, 2014 [15]).

For example, a degree 8 single precision polynomial approximation guarantees the 24 bit ac-

curacy of Fk(η, β) of the orders, k = −1/2(1)5/2, when −∞ < η ≤ 8.92 and β ≤ 0.2113. Also, a

degree 7 double precision polynomial approximation assures the 15 digit accuracy of Fk(η, β)

of the same orders when −∞ < η ≤ 29.33 and 0 ≤ β ≤ 3.999 × 10−3. Thanks to the piecewise

minimax rational approximations of Fk(η) (Fukushima, 2015 [18]), the averaged CPU time of

the new method is roughly the same as that of single evaluation of the integrand of Fk(η, β).

Since most of Fk(η) are commonly used in the approximation of Fk(η, β) of multiple contigu-

ous orders, the simultaneous computation of Fk(η, β) of these orders is further accelerated by

the factor 2–4. As a result, the new method runs 70–450 times faster than the direct numerical

integration in practical applications requiring Fk(η, β).

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The generalized Fermi–Dirac integral is an important special function in astrophysics [1, Section 24.4] and in solid state physics

[2]. The integral is written in the form of an integral transform [3, Section 6.10] as

Fk(η,β) ≡
∫ ∞

0

tk
√

1 + (β/2)t dt

exp (t − η) + 1
. (k > −1; −∞ < η < ∞; β ≥ 0) (1)

It is a generalization of Fk(η), the Fermi–Dirac integral [2] widely used in quantum statistics, in the sense Fk(η) = Fk(η, 0). There

are a few other expressions of the generalized Fermi–Dirac integrals [4,5]. However, the above standard form will be treated

throughout this article.

The precise and fast computation of Fk(η, β) is quite difficult [3, Section 6.10]. This issue has been discussed since the early

days when a Nobel laureate, Chandrasekhar, determined the limit mass of white dwarf by employing the integrals [6]. Indeed, a

single chapter is fully devoted to its computation in a modern text on the stellar structure [1, Chapter 24].
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Despite that many methods have been proposed to compute the integral [5,7–12], the current standard procedure

[3, Section 6.10] is the numerical quadrature by the double exponential rule [13] with a splitting of the integration interval

at t = η. The method is sufficiently accurate but slow in general. In the astrophysical applications, frequently required is the

simultaneous computation of Fk(η, β) of three contiguous half integer orders, k = 1/2, 3/2, and 5/2. As a result, the standard

method requires 150–1800 evaluations of the integrand for each combination of η and β [3, Section 6.10].

This is quite time-consuming if considering their frequent utilization. For example, the evaluation of the integrals must be

conducted at all locations inside the stars at every step of their evolution tracking. Thus, the evolution computation of a three-

dimensional star with even a small number of spatial grids as 128 for just 1000 time steps would require the number of the

simultaneous evaluation of the three integrals as many as 1283 × 1000 ≈ 2.1 × 109. Even if each computation costs only 50 μs,

the total CPU time would be of the order of day.

Recently, an extension of the numerical integration method of [14, Section 3] is developed to compute a general integral of the

Fermi–Dirac distribution including Fk(η, β) [15]. This method significantly reduces the number of integrand evaluations when

η > 4 by the factor 1.2–120 [15, Fig. 3]. Nevertheless, the extended method is not effective for negative and small positive values

of η. On the other hand, when η is sufficiently large, applicable is the Sommerfeld expansion [16] to compute a general integral

of the Fermi–Dirac distribution. Although the expansion is of asymptotic nature, its appropriate truncations compute Fk(η, β)

with the single and double precision accuracies, respectively [17]. However, still challenging is the precise and fast computation

of Fk(η, β) for not so large values of η.

In order to overcome this situation, by using newly-developed procedures to compute Fk(η) [18], a new method is developed

to compute Fk(η, β) in this article. Below, Section 2 explains the new method of computation, and Section 3 shows the results of

numerical experiments.

2. Method

2.1. Series expansion of Fk(η, β) with respect to β

Consider the computation of Fk(η, β) of the half integer orders, −1/2(1)5/2, when η is less than ηS, the threshold values of the

truncated Sommerfeld expansion [17], which ranges 8.9–13.4 and 29.3–38.8 in the single and the double precision environments,

respectively. In many practical applications, the parameter β is relatively small. In the astrophysical cases, for example, the

maximum value of β of electrons in ordinary stars like the Sun is of the order of 10−3 [7]. Meanwhile, that of protons as well as

neutrons is less than 0.1 for all cases. On the other hand, also small are β of typical semiconductors including that of InSb being

around 0.3 [8].

Therefore, examined is the series expansion of Fk(η, β) with respect to β . The key function here is the generalization factor,

g(x) ≡
√

1 + x/2, where x ≡ βt. If it is well approximated as a polynomial of x as g(x) ≈ ∑J
j=0

g jx
j, then an approximation of

Fk(η, β) is obtained by the termwise integration as

Fk(η,β) ≈ F ( J)
k

(η,β) ≡
J∑

j=0

gjβ
jFk+ j(η). (2)

Notice that the coefficients gj are independent on the order k, and therefore, they can be commonly used for the approximation

of Fk(η, β) of different orders in general.

2.2. Approximation of generalization factor

Consider an approximation of the generalization factor, g(x). Since the effectiveness of the Maclaurin series expansion [21,

Formula 15.4.6] is limited by an algebraic singularity of g(x) at x = −2, developed are the minimax polynomial approximations.

Assume that both of J, the degree of the approximation polynomial, and X, the length of the approximation interval, are specified.

Then, a set of the polynomial coefficients, gj for j = 0, 1, . . . J, are determined so as to minimize the relative approximation error

in the interval 0 ≤ x ≤ X. In practice, the process is reversed. Namely, when the required error tolerance is specified, X is maxi-

mized under the condition the maximum relative error of approximation does not exceed the tolerance. The reversed procedure

implemented by Mathematica Version 10 [19] determined the coefficients as listed in Tables 1–3.

2.3. Maximum parameter

Now that the minimax polynomial approximation of g(x) is established, easily constructed are the polynomial approximations

of Fk(η, β) by using them. Since the interval of η is as limited as −∞ < η ≤ ηS, the maximum relative error for the given value

of β is measured by setting η = ηS. This must be compared with δ, the given relative error tolerance. Extending the process,

actually determined is βS, the maximum value of β when η ≤ ηS such that the relative error does not exceed δ. The relative

errors of Fk(η, β) are measured by numerically comparing the approximate value with the reference values, which are prepared

by the quadruple precision numerical integration by means of a quadruple precision extension of Ooura’s intde, an adaptive

numerical quadrature program in the double precision environment based on the double exponential rule [20]. Notice that, only

the integrals of negative arguments are required in some applications such as the evaluation of the physical quantities of the
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