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a b s t r a c t

This paper aims at developing a meshless approximation based on the Moving Least Square

(MLS), in addition to its application for solving a system of linear Fredholm integral equations

of the second kind. For the MLS, nodal points are used to approximate the unknown functions.

These points can be selected as regular or random from the domain under study. The method

is a meshless one, and since it uses a local shape function in the vicinity of each nodal point

which is chosen from the support points, it does not depend on the geometry of the domain.

In this method, the unknown function is considered as a vector of functions of its kind. An

error analysis has also been provided for this new method. A simple and efficient application

of this method has also demonstrated through several numerical examples.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The solutions of integral equations have a major role invarious fields of science and engineering. The mathematical modeling

of any natural phenomenon leads to a linear or nonlinear equation which may be an ordinary or a partially differential one,

the Fredholm or Volterra integral one, an integro-differential one, or a system of these functional equations. In [1,2,22], we

can find several methods for solving the integral equations and the system of integral equations. A number of recent mesh-

less methods have been attracting much attention and have considerably become widespread. A number of the well-known

approaches are listed as follows: Element-Free Galerkin (EFG) [3], Boundary Node (BN) [4], hp-cloud [5], Meshless local boundary

integral equation (LBIE) [6], Meshless Local Petrov–Galerkin (MLPG) [7,8]. particularly Moving Least Squares (MLSs) method for

solving partial differential equations. In this paper, a numerical method, based on the MLS, which utilizes some distributed nodal

points to approximate the unknown functions is presented. In order to solve a system of integral equations, the distribution of the

nodes was possible to be selected regularly or randomly in the domain under study. At first, the nodal points are selected, after

which the shape functions are generated in any subdomain in the neighborhood, of these, of this nodes, and then the unknown

functions, as components of the unknown vector function, will be approximated by these shape functions. Using the computer

for implementing the method makes it flexible for being applied in most classes of systems of integral equations. A system of

linear Fredholm integral equations can be presented as follows.

U(x) = F(x) +
∫ b

a

K(x, t)U(x)dt (1.1)

where

U(x) = (u1(x), u2(x), . . . un(x))T Vector of unknown f unctions,
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F(x) = ( f1(x), f2(x), . . . fn(x))T Vector of known f unctions,

K(x, t) = [ki j(x, t)] i, j = 1, 2, . . . , n Matrix of Kernels. (1.2)

2. Moving least square approximation

The moving least square (MLS) approximation may be considered as a mesh-less scheme that has the properties of local

interpolation, high accuracy, and can be applied easily for an equation in n-dimensional space. This is obtained through the

use of the weight functions that allow control of the locality and continuity of the approximation. The MLS method started

with Shepard’s method [9] and was later extended by McLain [10,11], Franke and Nielson [12], and Lancaster and Salkauskas

[13]. Now we will follow the well-known works on MLS. Consider a sub-domain �x neighborhood of a point x and the do-

main of definition of the MLS approximation for the trial function at x, which is located in the problem domain �x. The data

(x j, ui(x j)), j = 1, 2, . . . N, i = 1, 2, . . . n is considered, so that x j ∈ �x and ui(x j) ∈ R approximate the unknown function, ui in �x

over a number of randomly located nodes xi, i = 1, 2, . . . N, the MLS approximant ua
i
(x), so a represents an approximation of ui,

for all x ∈ �x, can be defined as

ua
i (x) =

m∑
k=1

ck(x)pk(x) = PT (x)c(x), i = 1, 2, . . . , n (2.1)

Let �m the space of polynomial of degree m, and let Bm = {p1, p2, . . . pm} be any basis of �m. we need to determine the coeffi-

cients c j ∈ c, j = 1, 2, . . . , m and c ∈ Rm in (2.1) such that
∥∥ui − ua

i

∥∥
2,w

is minimized. Namely

ξ(c) =
∥∥ui − ua

i

∥∥
2,w

=
N∑

j=1

[ui(x j) − ua
i (x j)]2w(x j),

=
N∑

j=1

[PT (x j)c(x) − ui(x j)]2w(x j)

= [P.c − ui]
T .W.[P.c − ui], (2.2)

is minimized. Where c is a vector containing the coefficients cj and w is the weight function. Note that xj is the value of x at j’th

node, N is the number of nodes in �x with w(x j) > 0, the matrices P and W are defined as:

P = [p(x1)
T , p(x2)

T , . . . , p(xN)T ]T
N×(m+1) (2.3)

W = (diag(w(x j)), j = 1, 2, . . . , N (2.4)

Note that p ∈ �m so that �m is a complete monomial basis of order m. For example, for a 1-D problem, the linear basis is {1, x}

and the quadratic basis is {1, x, x2} and so on. Also ui is a vector of i’th unknown function from system (1.1) in node x j, so

ui = [ui(x1), ui(x2), . . . ui(xN)]. (2.5)

From Eq. (2.2) we have

ξ(c) = cT PTWPc − 2uT
i WPc + uT

i Wui (2.6)

By minimizing the Eq. (2.6), ∇ξ(c) = 0, and defining the matrices A(x) and B(x) as

B(x) = [w1(x)p(x1), w2(x)p(x2), . . . wN(x)p(xN)] = PTW (2.7)

A(x) =
N∑

i=1

wi(x)p(xi)
T p(xi) = PTWP = B(x)P (2.8)

With respect to c(x) we have the following linear relation between c(x) and ui,

A(x)c(x) = B(x)ui (2.9)

We know that Eq. (2.9) is well define when the matrix A in (2.8) is nonsingular. It can be seen that this is the case if and only if

the rank of P equals to m. computing c(x) from (2.9) and substituting it into Eq. (2.1) give results in

ua
i (x) =

m∑
j=1

c j(x)pj(x) =
m∑

j=1

pj(x)[A−1(x)B(x)]ui, i = 1, . . . , n (2.10)

We define

�(x) = pT (x)A(x)−1B(x) (2.11)
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